[ACH] Albrecht, U.:
Extension functors on the category of $A$-solvable abelian groups. Czech. Math. J. 41 (116) (1991), 685–694.
MR 1134957 |
Zbl 0776.20018
[AWM] Albrecht, U.: Endomorphism rings and Fuchs’ Problem 47. (to appear).
[AM] Arnold, D., and Murley, E.:
Abelian groups, $A$, such that $\mathop {\mathrm Hom}\nolimits (A,-)$ preserves direct sums of copies of $A$. Pac. J. of Math. 56 (1975), 7–20.
DOI 10.2140/pjm.1975.56.7 |
MR 0376901
[DG] Dugas, M., and Göbel, R.:
Every cotorsion-free ring is an endomorphism ring. Proc. London Math. Soc. 45 (1982), 319–336.
MR 0670040
[F] Faticoni, T.:
Semi-local localization of rings and subdirect decomposition of modules. J. of Pure and Appl. Alg. 46 (1987), 137–163.
DOI 10.1016/0022-4049(87)90090-9
[FG] Faticoni, T., and Goeters, P.:
Examples of torsion-free abelian groups flat as modules over their endomorphism rings. Comm. in Algebra 19 (1991), 1–27.
DOI 10.1080/00927879108824126 |
MR 1092548
[FG1] Faticoni, T., and Goeters, P.:
On torsion-free $\mathop {\mathrm Ext}\nolimits $. Comm. in Algebra 16 (9) (1988), 1853–1876.
MR 0952214
[Fu] Fuchs, L.:
Infinite Abelian Groups Vol. I/II. Academic Press, New York, London, 1970/73.
MR 0255673
[ST] Stenström, B.:
Rings of Quotients. Springer Verlag, Berlin, New York, Heidelberg, 1975.
MR 0389953