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1. INTRODUCTION

One of the many ways to investigate universal properties of a torsion-free abelian
group A is to consider A as a left module over its endomorphism ring E(A). This
approach was initiated by Arnold and Lady in [8] for torsion-free abelian groups of
finite rank, and extended to larger classes of groups by Arnold and Murley in [9].
Scveral others, including the author of this note, continued the discussion initiated
in [8] and [9] to obtain further insight in the way in which an abelian group A and
its endomorphism ring E(A) are related, see for instance [11], [12], [16], [7], and [17].
One of the main difficulties encountered in this approach to the structure problem
of abclian groups is the generality of the arising classes of groups. As desirable as
this generality may be, it severely limits the tools available in the discussion. The
perhaps most useful of these is the adjoint pair of functors (Hom(A4, —), — ®ga) A)
between the category of abelian groups and the category of right E(A)-modules.
The way these functors are used in the discussion of abelian groups is by considering
full subcategories of the category of abelian groups on which the functors induce
category equivalences. The largest of these classes is €4, the class of A-solvable
abelian groups. It is equivalent under these functors to a class of right F(A)-modules,
which is denoted by .#4.

Arnold and Murley showed that €4 contains the class of A-projective abelian
groups if A is self-small, i.e. the functor Hom(A, —) preserves direct sums of copies
of A. In addition, they investigated under which conditions locally A-projective
groups arc A-solvable. While it is possible to obtain a satisfactory insight in the
categorical properties of the class €4 [3], it proved difficult to construct examples
of A-solvable groups which are not subgroups of A’ for some index-set I, unless A
is completely decomposable. In the case that A C Q, Warfield showed that every
torsion-free group G of finite rank with IT(G) > type A is A-solvable [19]. A first
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step in the direction of general existence theorem for A-solvable groups was taken
in [5], where we constructed A-solvable groups which are not subgroups of products of
A in the case that E(A) is a hereditary ring whose quasi-endomorphism ring QE(A)
is semi-simple Artinian.

It is one of the goals of this paper to prove such an existence theorem for more
general classes of A-solvable groups than those constructed in [5]. In particular, we
do not impose any immediate restrictions on A as in [5] except for the standard
requircment that A is self-small and faithfully flat as an E(A)-module.

Theorem 1.1. (ZFC + V = L) Let A be a torsion-free abelian group whicli is self-
small and faithfully flat as an E(A)-module. There exists a proper class of pairwise
non-isomorphic A-solvable groups G with Hom (G, A) = 0 whose endomorphism ring
is the center of E(A).

The groups in this theorem are constructed as colimits of a directed system of
A-projective groups in the category of A-solvable groups. The categorical results
which are necded in this construction are consequences of a more general discussion
in Sections 2 and 3 which investigates when limits and colimits exist in the category
of A-solvable groups. By [18], this question is equivalent to whether or not ¢, is
a preabelian category with dircct sums and products. The question whether %4
is preabelian has been addressed in [3] in the case that A is an indecomposable
generalized rank 1 group. Although this paper uses several results of [3] in a more
general sctting, no new proofs are given unless the originally used argunents do
not carry over. Theorem 2.3 shows that limits and colimits exist in the category of
A-solvable groups provided .#4 is the torsion-frec class of a torsion-theory of right
E(A)-modules.

While Proposition 2.2 shows that the colimit of a functor # between a small
category and ¢4, if it exists in €4, is the largest A-solvable epimorphic image of
the colimit of # in the category of abelian groups, Theorem 2.3 does not give a
similar description for limits in %’4. In Section 3, we investigate when the €4-limit
of a functor .# is isomorphic to the largest A-solvable subgroup of its limit in the
category of abelian groups. Theorem 3.2 gives a complete answer to this question
and relates our results to work by Gruson and Raynaud in [15] concerning tensor-

products and Cartesian products.
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2. LIMITS AND COLIMITS IN 64

Consider abelian groups A and G. Composition of maps induces a right E(A)-
module-structure on H4(G) = Hom(A, G). Since A is a left E(A)-module, T4 (M) =
M ®pa) A defines a functor from the category of right E(A)-modules, .Zg(a), to
the category of abelian groups, &b, which is a right adjoint to H4. The natural
transformations associated with the adjoint pair (H4,T4) arc denoted by 6 and ¢
respectively. The functors H 4 and T4 restrict to a category equivalence between €4
and the category .Z4 of right F(A)-modules M for which ¢ps is an isomorphism.

Lemma 2.1. [2, Lemma 2.1 and Theorem 2.2] Let A be a self-small abelian group
which is flat as an E(A)-module.

i) An exact sequence 0 = B 5 C 5 G = 0 of abelian groups, in which C is
A-solvable, induces an exact sequence 0 — T4 H 4(B) oy B LN Ta(M) %G 50in
which M =im Ha(8) and 0: Ty(M) — G is the evaluation map.

i) €a is A-closed; i.e. it is closed with respect to subgroups and finite direct
sums, and kernels of homomorphisms between A-solvable groups are A-solvable.

Consider a functor & from a small category I into €’4. The colimit of Z in the
categories €4 and @b is defined as in [18], from which the following notation is
taken:

Let p1j: F(j) = @ Z(i) be the embedding into the j*'-coordinate. For an I-

i€l
morphism A: i — j define 6y = p; F(A) — j;. In the category of abelian groups,

lim F = [@ F(i)]/B where B = (imdy | A € Mor(I)). The associated compati-
—o'b iel

ble family of maps ¢;: F (i) = hﬂ} Z is given by ¢;(2) = §;(z) + B for all x € F;.

If we try to compute the colimitd (l;f the same functor & in ¥4 as the cokerncl of
the embedding B — @, &, we encounter the problem that this map not always is
in €4 since €4 need not be closed under arbitrary direct sums even if A C Q [3].
Wahile this prohibits a direct application of the cokernel construction of [3], it can
be modified to prove the following result. Because of the similarity of the proofs,
we only present those parts where modifications of [3] are necessary and refer to [3]
otherwise.

Proposition 2.2. Let A be a self-small abelian group which is flat as an E(A)-
module. A functor & from a small category I into €4 has a colimit in 6, if aud only
if there is a smallest subgroup V of @ % (i) such that B C V and [ @ F(i)]/V € €.

i€l i€l

Proof. Assume that the A-solvable group G together with a compatible fainily
of maps o; € Hom(Z (i), G) is the colimit of F in €4. To simplify our notation, we
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write H for the colimit of # in &/b. There is a homomorphism o: H — G with g; =
op; for all i € I. Since H is A-generated, the group o(H) is A-solvable by Lenuma 2.1.
To show that o(H) together with the maps o; is the colimit of & in €4, we consider
an A-solvable group i and a compatible family of maps A\; € Hom(&Z;, ). There
exists a unique map A\: G — K with A\; = Ao; for all i € I. We can, in addition, find
aunique map g: H — I with A; = pyp; for all i € I. We denote the restriction of \ to
o(H) by €, and observe eo; = Ao; = A;. If § € Hom(o(H), I{) also satisfies do; = )
for cach 4, then (00)p; = do; = A = Aa; = (Ao)y; yields 60 = 9 = Ao. For every
x € o(H), we choose h € H with @ = o(h). Then, §(z) = do(h) = Ao(h) = e(a).
This shows that o(H) indeed is the colimit of F in €4.

Let V' be the subgroup of @ #(i) which contains B and satisfies kero = V/B.
i€l
Obviously, [6} (z)]/V is A-solvable. Suppose that U is another subgroup of

D F(3) such that K = @,[%#:]/U is A-solvable. Define a map n: H — K by
iel
n(x + B) = x + U. For all i,j € I and all I-morphisms A: i — j, we have

mlo; F(N)] = mp;. Hence, {mp; | i € I} is a compatible family of maps in €.
There cxists a unique map ¢: o(H) — K with 7p; = ¢o; for all ¢ € I. Since H
is the colimit of & in &b and mwp; = (Yo)p; for cach i € I, we obtain # = 0.
Therefore, V/B = kero C kerm = U/B. Conversely, supposc that there exists a
smallest subgroup V of @ £ (i) with the required properties. Denote the canonical
el
projection of H onto G = [@ F(i)]/V by n. If we set 0; = m;, then it is routine to
i€l

check that G together with the maps {o; | i € I} is the colimit of F in €. (sce [3])

O

Theorem 2.3. The following conditions are cquivalent for a self-small abcelian
group A:

a) /4 is the torsion-free class of some torsion-theory of right E(A)-1modules.

b) i) A is faithfully flat as an E(A)-module.

i) € Is a cocomplete category.
ili) €4 is a complete category withlim  F = TyH,(lim  F) for all functors
—%a — /b
Z from a small category into €x.

Proof. a) = h): Since./Z4 is closed with respect to submodules, A is faithfully
flat by [6]. To show the last two conditions in b), we consider a family {G; | i € 1} of
A-solvable groups, and first establish that TAHA( 11 Gi) is the €4 -product of this
family. Since Hx(G;) € ./ 4, and ./ 4 is closed wit,llflrcspcct to products, we obtain
that TAHA(HGi) is A-solvable. Define maps A;: T,\HA(I;[G;) = G by \j =

I

0c. TaH (m;) where 72 I1;G; — G denotes the projection onto the j"-coordinate.
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If Be %y and {a;: B — G;|i€ I} is afamily of €a-morphisms, then the maps
H i (a;) induce a unique map a: Ha(B) — HA(H Gl) with Hx(m;)a = Ha(a;). We

set o = T,\(d)t’)l;', and obtain \;a = OGiTA(HA(m)o)HBI = .

It remains to show the uniqueness of . Suppose that the map f[: B —
TaH4(I1;G;) satisfies \;3 = a; for all i € I. Then Ha(M)Ha(B) = Ha(a).
Observe that, for an abelian group H and a right E(A)-module M, we have
Ha(0m)en, oy = idy, iy and 07, (anTalear) = idr, (m). Therefore

Ha(A\i)HA(B) = Ha(0c, ) HATAH (i) Ha(B)
—SOH HATAHA(”U)I{A(}}) A(Tri)#’}_]i(n,G‘.)HA(/g);

and we obtain & = SQTIZ(H,G,-)HA(U) because of the uniquencss of &. Thus, a =
TA(‘,QI”IT‘(HIG_,))TAHA(L?)OEI = 9TAHA(H,G,-)TAHA(/3)91_31 = /3 since the diagram

Talla(B)
TaHA(B) ——————— TaHATAHA(I1; G))

llen IlgrAHA(n,c,;

B LN TaHA(IL,Gs)
commutes.

Since @ Ha(G:) C ] Ha(G:) and the last module is an clement of ./Z4 by
what ha.sﬁ)lecn shown, V\:eélobtain that .4 contains @ Ha(G;) because of a). Thus
@D Gi = Ta @ H4(G;)) is A-solvable. Therefore, (Kfils closed with respect to direct
:silms To esmbhblx that €4 has cokernels, we consider a map ¢: G — L where L is A-

solvable, and show that there is a smallest subgroup V of L such that ¢(G) C V and
L/V is A-solvable. Consider the family /7 = {U C H | ¢(G) CU and L/U € 6 };
and observe that ' = T4 H 4 ( H L/U) is A-solvable by what has been shown so far.

The projection maps L — L/U mduce amap A: L — K, whose kernel is a subgroup
of L with the desired properties.

Finally, consider a functor F#: I — %4, and set let G; = F(i) and P =
TAHA([[G:). 1f 6:4(8) — j(0) is an I-morphism, then define o5: P — G
1

to be the map F(6)Ais) — Aj(s) where the A’s are defined as in the first paragraph

of this proof. Since €4 has kernels and products, the limit of % in €4 exists by

(18], and is the kernel of the map o = Ta(e)0p': P — TaHa([] Gj(s)) where ¢
s

HA(P) — HA([]Gjs)) is induced by the maps Ha(os) by the universal property of
5
a product of right E(A)-modules.
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In the category of abelian groups, the limit of % is the kernel of the map 7:
[1G: = []Gj(s) which is induced by the mappings 75 = F(0) 75 —mj(5)- We obtain
I s

Ha(os) = [Ha(F(8))Ha(mis)) — HA(WJ'(«S))]@BIA(M- This shows H4(05)0,(p) =
Ha(15) = Ha(ms)Ha(7) which in turn yiclds ¢ = HA(T)(PI_[:(P). Since Op is an
isomorphism and A is flat,

kero = Ta(kere) = Ta(keregyy, (py) = Talker Ha(7)) = Tal p(ker 7).
This shows that part iii) of condition b) holds.

b) = a): The class ./#, is closed with respect to submodules by [6]. If {A; | i € I}
is a family of modules in . 7,4, then we can find A-solvable groups {G; |7 € I'} with
M; = Hu(G;). We obtain TA(HJ\[i) = TAHA(HGI-) which is A-solvable by D).

I i
Another application of [6] yields []M; € #4. The fact that .7, is closed with

1
respect to extensions is an immediate consequence of the 3-Lemina. 0

3. A-SOLVABILITY AND THE MNITTAG-LOEFLER-CONDITION

The results of the last section raise the question which conditions have to be
satisfied by a torsion-free abelian group A to ensurc that Sy ( I1 Gi) is A-solvable for
i

all families of A-solvable groups {G;}ies. Following [15], we say that a left R-module
A satisfies the Mittag-Loefler-condition (ML) with respect to a class /4 of right R-
modules if A is the direct limit of a filtration {Fy, i« Fy — Fj | 1,5 € I with i < j}
of finitely presented modules satisfying

(x) Foreveryi € I, thereis j € I with j > i such that ker(1y©p;) C ker(1y '.;-3/1{)
for all M € .#.

In [15], the following result was proved:

Lemma 3.1. The following conditions arc equivalent for a left R-module A and
a family of right R-modules ./ :

a) A satisfies ML with respect to ./ .

b) Condition (x) holds for any filtration of finitely presented left R-modules whose
direct limit is A.

¢) If{U; | i € I} is a family of elements of ./, then the natural map o4:
[[1U:] ©r A = [1[Us ©r A] is one-to-oue.

I I

Using this result, we obtain:
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Theorem 3.2. The following conditions are cquivalent for a sclf-small abelian
group A which is faithfully flat as an E(A)-module:
a) A satisfies ML with respect to ./ 4.
b) 1) ./ is the torsion-free class of some torsion-theory on A pay-
i) If {U; | i € I} is a family of A-balanced, A-generated subgroups of an

A-solvable group G, then (| U; is A-generated.
i€l
¢) ©a is a cocomplete category; and lim F = Sy(lim F) for all functors F
—Ca — b
from a small category into €.

d)  S.(J] G:) is A-solvable for all families {G; | i € I} of A-solvable groups.
I

Proof. a)= d): By Lemma 3.1, the natwral map o4 : Ty ( [T1M;) = [1Ta(0M;)
1 i

is one-to-one for all families {M; | i € I} C Za. IEXN: [[M; = Ha([[Ta(M;))
1 I

denotes the natural isomorphism, then Ha(oa)on,m, = A yields that Ha(o,) is
onto. Since it also is a monomorphisi, the map ¢r, ar, is an isomorphism too. The
same holds for the first vertical map and the map forming the top-row of the following
commutative diagram:

TalHa(oa)
TaHATx ( I M,-) Tl ( I T,\(Mi)>
1 I
OTA(nIMi)l 0(1,7‘,4(1”,‘)1
0 — TA(H Mi) 7, T17A(M))
I I

Thus, 011, 7, () is an monomorphism, and S4 ([T Ta(M;)) is A-solvable.
1
d) = ¢): Since SAo([[G:) is A-solvable for all families {G; | i € I'} of A-solvable
I
groups, we obtain S, (lim  F) is A-solvable for all functors # from a small category
— /b

into €’4. The arguments in the proof of implication b) = a) of Theorem 2.3 can be
used to show that /4 is the torsion-free class of some torsion-theory. Theorem 2.3

yields that €4 is cocomplete, and lim  F = TaHa(lim  F) = Sa(lim F) by
—q — /b — /b

Ca
what has been shown.

¢) = Db): In view of Theorem 2.3, it remains to verify condition ii): Since U;
is an A-balanced, A-generated subgroup of G, the group G/U; is A-solvable, and
Sal [;[G/Ui) is A-solvable by c) since products are inverse limits. The projection

maps G — G/U; induce an € 4-homomorphism G — S A(HG / U,-) whose kernel is
)i

N U;. Since A is faithfully flat, the latter group is A-generated.
1
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b) = a): Let {G; | i € I} be a family of A-solvable groups. We write P =[] G;

and observe that T4 H, (P) is an A-solvable abelian group by Theorem 2.3. In olr(lor
to show that S4(P) is A-solvable, we consider the A-balanced exact sequence 0 —
kerfp — TaHu(P) or SA(P) — 0. Since TAH4(P) is A-solvable. the same holds
for S4 () once we have shown that kerép is A-generated in view of Lemma 2.1 ..

Let m;: P — G; be the projection onto the "

-coordinate. Suppose @ € kerfp.
Since O, TaH4(m;) = mfp, we obtain & € ker TAH 4(w;) for all i € I since G; is A-
solvable. On the other hand, if @ € ker TaH (m;) for all i € I, then mfp(x) =

0, which is ounly possible if 8p(x) = 0. Thus, kerfp = (kerT.H, (7). But
I

ker TaH a(m;) is a direct summand of the A-solvable group TaHa(P). By b), ker )
is A-generated.

Let A: P — [[TaHA(G;) be the isomorphism which is coordinatewise induced by
1
the maps f¢,. We identify the right E(A)-modules HA(H 7;) and H H4(G;) and

observe that A@p = g4. Since 0p is a monomorphism, tllL same holds for 04. By
Lemma 3.1, A satisfies ML with respect to /4. O

In the case that A has finite rank or is a generalized rank 1 group, the last result
can be improved. In order to do this, the following technical result is needed:

Lemma 3.3. Let A be a self-small torsion-free abelian group which is faithfully
flat as an E(A)-module. Then, P Q € €4 iff A is a homogencous, completely
decomposable group of finite rank.

Proof. Suppose @ Q € €. If A has infinite rank, thon thcre is a subgroup
B of A with A/B = Q, and the sequence 0 - @_ B > P4 = EB Q — 0,
which is induced coordinatewise, is A-balanced since A is faithfully flat. There
is an epimorphism §: A — @ Q, which factors through 3, say § = fs. Since
A is sclf-small, e(A4) C @, A for some n < w, which results in a contradiction.
Hence, A has finite rank. If U is a pure rank 1 subgroup of A, then A/U is an
A-generated subgroup of the A-solvable group @, Q. Since A is flat, we obtain
that U is A-solvable. The inclusions U C A induce an epimorphism ¢: G = @ {U |
U is a purc rank 1 subgroup of A} = A. Since S4(G) = G and A is faithfully flat,
the map e splits; and A is completely decomposable.

ritc A = A" @ ... AT where the A;’s are pairwise non-isomorphic rank 1
groups. Let U be a pure rank 1 subgroup of the A-projective group A, .. .4, which
is generated by an element (aq,...,as) with a; # 0 for all i. Then, type U < type A;
fori=1,...,s Since [A;1 @ ... D A]/U C P, Q is A-generated, we obtain that U
is A-generated too. Then, Hom(A;, U) # 0 for some 7, and U = A;. Without loss of
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generality, we may assumne ¢ = 1. This shows that A is an epimorphic image of @, A,
for some index-set I. As before, this epimorphism splits; and A is homogeneous.
The converse is obvious. a

Proposition 3.4. Let A e a torsion-free abelian group such that E(A)™ satisfics
the DCC for Z-pure submodules U with E(A)"/U € . Then, SA(II;G;) is A-
solvable for all familics of torsion-free A-solvable groups {G; |1 € I}.

Proof. For a finite subset J of I, let 7;: [[Gi = @, Gi be a canonical
T

projection with kernel [] G;. We consider a map p: A™ — [] G; for some m < w,
and assume kery # kQ'JW J for all finite subsets J of I. Sluppose that we have
selected indices {i1,...,i,} C I. If U, = ﬁ ker m;; ¢, then kerg # U,; and there
is an41 € Un \ ker . Choose an index in+f_€1 I with 7, ¢(ant1) # 0. We obtain
that U, 41 is a proper subset of U,,.

n
Since A™ /U, C P G;; and the G;’s are torsion-frec, we have that U, is a pure, A-
j=1 .
generated, A-balanced subgroup of A™. Therefore, { H4(U,) | n < w} is an infinite

strictly descending chain of Z-pure submodules of H4(A™) with Hs(A™)/Ha(U,) €
./ 4 for all n < w. However, such a chain cannot exist.
Thercfore, we can find a finite subset J of I such that im ¢ is isomorphic to a
subgroup of @ G;. This shows that im ¢ is A-solvable and the same holds for G.
jeJ
g
The last result in particular shows that 4’4 is closed with respect to direct sums
of torsion-free groups if A is as in Proposition 3.4.

Corollary 3.5. Let A be a torsion-free, self-small abelian group which is faith-
fully flat as an E(A)-module, but not homogeneous completely decomposable of
finite rank. The following conditions are equivalent if E(A)/pE(A) is Artinian for
all primes p of Z, and E(A)™ has the DCC for Z-pure right submodules U with
EA) U € M a:

a) A satisfies ML with respect to .#4; and €4 does not contain J, for any prime
poflZ.

b) € is cocomplete, and does not contain J, for any prime p of Z.

¢) /4 is the torsion-free class of some torsion-theory on #g(ay; and J, is not
A-solvable for any prime p of Z.

d) Ifpisa prime of Z with r,(E(A)) < oo, then r,(E(A)) < [r,(A)]?.

Proof. a) = c)is an immediate consequence of Theorem 3.2; while ¢) = D)
follows from Theorem 2.3.
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b) = d): Condition d) can be verified as in [3], once we have shown that the
clements of €4 are torsion-free. If G is an A-solvable group such that G[p] # 0 for
some prime p, then Z/pZ is A-solvable by Lemma 2.1; and A # pA. To show that
©'a contains all bounded p-groups, it is necessary to verify that A has finite p-rank.

Since cocomplete categories have cokernels, we obtain that multiplication by p on
A has a €4-cokernel which is of the form A/V where V is the smallest subgroup of
A containing pA such that A/V is A-solvable. We choose a Z/pZ-basis {e; | i € I} of
A/pA. For every finite subset J of I, we can find a subgroup U, of A containing pA
such that A/pA = (e; | j€ J)®U,;/pA. Since A/U; = @, Z/pZ is A-solvable, we
have V C Ujy. For 2 € A\ pA, there is a finite subset Jy of I, with « € (e; | j € Jo).
Hence, x ¢ Uy, and N Uy = pA. Thercfore, A/pA = @, Z/pZ is .-

{JCI|lJ|<oo}

solvable. Consider the exact sequence 0 - U - A — Z/pZ — 0 which induces
0D, USSP, 4 5 @D, 2/pZ - 0 coordinatewise. Let 6: A — €, Z/pZ be an
epimorphism. Since the last sequence is A-balanced, there is a map vy € Ha(, 4)
with 3¢ = 0. The fact that A is self-small yields (A) C @, A for some finite subset
J of I. Consequently, 6(A) C @, Z/pZ; and I has to be finite. Since A has finite p-
rank, every family of cyclic p-groups is A-small. As in [3], €4 is closed with respect
to direct sums of A-small families, and, therefore, contains all bounded p-groups.
Consider the map ¢: A¥ — A“ which is defined by ¢((an)ncw) = P ncw. As
in [3], ¢ induces an endomorphism ¢ of the group G = S4(A*) which has G/p(G)
as its ¥a-cokernel. Observe that G is A-solvable by Proposition 3.4. Morcover,
HA(G/lo(G)) = T] [E(A)/p"E(A)] as a right E(A)-module.

nw

Let U be the submodule of H,(G/¢(G)) which corresponds to @E(A)/])”E(A).
Asin [11, Proposition 39.4 and Example 12.2], the additive group of U is torsion-free,
reduced, algebraically compact, and p-local. Since U C Ha(G/p(G)) € ./Z 4, the map
@y is an isomorphism by [6]. Thus, Ta(U) is a torsion-free, A-solvable group. If it
were not cotorsion-free, then it would have a direct summand isomorphic to Q or J,
cither of which is not possible by the hypotheses. Thus, T4 (U) is cotorsion-free, and
the same holds for U = H T4 (U) which results in a contradiction. This shows that
the elements of €4 are torsion-free.

d) = a): Assume that J, is A-solvable. By [13], the exact sequence 0 — J, LN
J, = Z/pZ — 0 is A-balanced. This shows that Z/pZ is A-solvable which is not
possible since A solvable groups have to be torsion-free by d) as in [3]. By Proposition
3.4, S5(I1;G;) is A-solvable for all groups G; € €4. Now apply Theorem 3.2. O

If we assume in addition that E(A) is right Noetherian and QE(A) is right Ar-
tinian, then the restrictions with respect to J, in the last result can be removed. We
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write

['(A) ={p|rp(A) < oo and rp(E(A)) = [ (A))%}.

Corollary 3.6. Let A be a self-small torsion-free abelian group which is faithfully
flat as an E(A)-module. The following conditions are equivalent if E(A)/pE(A) is
Artinian and QE(A) is Artinian:

a) A satisfies ML with respect to ./ 4.

h) € contains Sa(G) for all reduced algebraic compact groups G with G = pG
for all primes p € I'(A4).

Proof. a) = b): Let p € T(4). As in [3], we obtain that €4 contains all
bounded p-groups. The proof of the last corollary can he adopted to show that @4
also contains .J, since €4 is cocomplete by Theorem 2.3. Every reduced algebraically
compact group G is a direct summand of a group which is a product of cocyclic groups
and copies of p-adic integers. Write G @ H = II;G; = C where each G; is cither
a cyclic ¢g-group or a group of g-adic integers for some prime ¢ of Z. Consider a
decomposition C = D & E where D consists of all those components of C' associated
with primes in I['(A), while E consists of the remaining components. Let 6: C — F
be a projection whose kernel is D. Since E is reduced, and G = pG for all primes
not in I'(4), we have G C ker § = D. Thus, we may assumne that the primes ¢ in the
definition of G; are taken from I'(A). Since each of the G; is A-solvable, we obtain
that S.1(C) is A-solvable by Theorem 3.2. This shows that S4(G) is A-solvable.

b) = a): By Theorem 3.2, it is enough to show that S4(II;G;) is A-solvable for
all A-solvable groups G;. To show this, we consider a map ¢: A™ — I1;G; for some

m < w. For a subset J of I, let my: [[G: — [] G be a projection on IT,;G; whose
I J
kernel is ITj\ ;G5

Suppose that there is no finite subset J of I with the following property:
mi(kermyp) is torsion for all ¢ € I\ J. Assume that we have chosen a finite
subset J,, of I and write U, = kermy, ¢. There is 4,41 € I'\ J, such that m;, ., ¢(U,,)
is not torsion. Choose an element x € U,, such that 7;, ., ¢(z) has infinite order. We
set Jop1 = J U {ing1}. Then, z € U,, \ Up4 has infinite order.

Morcover, since A™ /U, C é Gi; and the latter group is A-solvable, we obtain

j=1
that U7, is an A-generated subg];roup of A™. Let W, be the Z-purification of H(U,,)
in Ha(A™). Then, To(W,) is the Z-purification of TaHA(U,) in TaHA(A™). In
particular, the Z-purification V;, of U, is an A-generated subgroup of A™. Since
U, /U,+1 is not torsion, we obtain that V;,/V,41 # 0. Hence, {QHA(V,,) | n < w}

is a strictly descending chain of submodules of QE(A)™ of infinite length. Since
QE(A) is Artinian, this is not possible.
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Hence, we can find a finite subset J of I with the required property. Write H =

@ G, which is A-solvable and K = II}\ymip(A™). Then, p(A™) C H @& Sa(L\).
i€J
It is enough to show that S4(I) is A-solvable. Let X; = mp(A™) fori € I\ J.

Since X; C G; is A-generated, we have that X; is A-solvable. We choose an -
generated subgroup B; of A™ with A™/B; = X;. Since A is faithfully flat, B; is an
A-balanced subgroup of A™. If H4(X;) were not torsion, then the same would be
truc for Ta H 4(X;) by the faithfulness of A, which is not possible. Since H4(X;) is an
epimorphic image of E(A)™, it is finitely generated, and hence bounded. Thus the
same holds for X;. Therefore, X; is contained in an algebraically compact group Y;
which is bounded by the same integer s as X;. Since X; is A-solvable, s is a product
of primes from T'(A). Thus, Y = II; ;Y; is an algebraically compact group. which is
divisible for all primes not in I'(A4), containing . By b), S4(Y) is A-solvable; and
the same holds for S4(K). Consequently, p(A™) is A-solvable. O

Example 3.1. The conditions on A in the hypothesis of Corollary 3.5 arc
satisfied in each of the following cases:

a) A is faithfully flat as an E(A)-module; and E(A) has finite rank.

b) A is a generalized rank 1 group which is not homogencous completely decom-
posable.

Proof. a)is obvious.

b) Since E(A) satisfies the restricted minimum condition, it is enough to show that
E(A)™ has the DCC for pure submodules U such that E(A)*/U € #,. It {U,, | n <
w} is an infinite descending chain of such submodules, then there is m < w such that
Vin = Upt1/U,, is singular. Otherwise, E(A)™ would have infinite Goldie-dimension,
which is not possible. Since U, is pure in E(A)", and E(A) is right Noetherian.
we obtain that V,,, is a finitely generated, singular torsion-free E(A)-module. The
fact that E(A) has the restricted minimum condition yields that V;, is Artinian,
which is only possible if its additive group is divisible. Then, T4 (V,,) is a divisible.
torsion-free A-solvable group. In particular, Q is A-solvable. We may assume that
A has infinite rank. This yields the inequalities |H4(Q)| = 2/41 > |4] > |E(4)].
On the other hand there exists an exact sequence A — Q — 0 which is A-balanced.
Thus, H4(Q) is an epimorphic image of E(A), which is not possible by the previous
incqualities. O

Even in the case that €4 is cocomplete, the limit of a functor # need not be

isomorphic to its colimit in /.

Proposition 3.7. Let A be a torsion-free abelian group which has a semi-prime,
two-sided Noetherian endomorphism ring of Krull dimension at most 1. If € is
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cocomplete and does not contain J, for any prime p, then there exists a functor F
from a small category into 64 whose colimit in €4 is not isomorphic to its colimit
in &b.

Proof. Observe that A satisfies the hypotheses of Corollary 3.5. Let I be the
set of positive integers, and set F (i) = A. If ¢ divides j, then set Mor;(i,j) = {\},
and define & (A) to be multiplication by j/i¢. Obviously, the colimit of # in &b
is the injective hull of A. Suppose that G = [®@F (n)]/U € €a. By Corollary 3.5,
G is a torsion-free divisible group. If G # 0, then A is a homogeneous completely
decomposable group. In this case the group J, is A-solvable which is not possible.
Thus, the colimit of & is 0 in €4. O

We conclude this section with an example of groups satisfying the Mittag-Loefler
condition:

Example 3.2. Let A be a cotorsion-free abelian group which is constructed
by [10, Theorem 3.3]. Then, A satisfies ML with respect to ./#4.

Proof. The group A in [DG, Theorem 3.3] is constructed in such a way that
A is the direct limit of a family of finitely generated free submodules U such that
A/U is flat. Let P be a finitely presented module, and o: P — A be a map. Then,
o(P) C U for some finitely generated, free submodule U of A such that A/U is flat.
Let 7 be o viewed as a map from P to U, and ¢: U — A be the inclusion map.
Then, ¢7 = o yields ker1p ® 7 C ker 154 ® o for all right F(A)-modules M. Since
A/U is flat, the map 1y ® t: M @4y U = Ta(M) is a monomorphism. Thus,
kerlpr ® o =kerly @ [o7] C ker 1y @ 7. By [15], A satisfies ML with respect to the
class of all E(A)-modules. O

In contrast to the last result, torsion-free groups of finite rank which are con-
structed by Corner’s Theorem need not satisfy ML with respect to .#/4:

Example 3.3. Let A be a torsion-free abelian group of rank 2 whose endo-
morphism ring is Z,. Then, A does not satisfy ML with respect to .#4.

Proof. By [3], the category €4 is not preabelian, and hence not cocomplete.
By what has been shown, A cannot satisfy ML with respect to 4. 0




4. AN EXISTENCE THEOREM FOR A-SOLVABLE GROUPS

Consider a functor F: I — ¥4 where I is a small category. While the results
of the last sections discuss when # has a colimit in %4, this section addresses the
question under when the colimit of % in the category of abelian groups is its colimit
in ¢4. We want to remind the reader of the notational conventions for colimits which
we have introduced following Lemma 2.1.

Theorem 4.1. Let A be a torsion-free abelian group which is faithfully flat as an
E(A)-module, and % a functor from a small category I into €4 such that {F (i)
i € I} is A-small. The following conditions are equivalent:

a) G =lim F is A-solvable.

— o7b

b) Ha(G) together with the family {Ha(y;) | i € I} induced by the compatible
maps p;: F(i) = G; is the colimit of the functor Ha % in the category of right
E(A)-modules.

Proof. a) = b): Let M be the colimit of the functor H,.% in the category
of right F(A)-modules where {¢; | ¢ € I} denotes the compatible family of maps
which is obtained as in [18]. As in Section 2, M admits an exact sequence 0 — B* =

P HaF(i) = M — 0. We may assume that ¢ is an inclusion map and the submodule

el

B* of @ HaF (i) is generated by the images of the maps ex = pyn) HaF (A) — 15
i€l

where A: s(A) = £(\) is an I-map, and p; is the embedding into the j*-

coordinate.
On the other hand, since A is faithfully flat as an E(A)-module, and the

groups G and € F(i) are A-solvable, the induced sequence 0 — H(B) Hafe
i€l
Ha( D Z(i)) - Ha(G) — 0is exact. Moreover, the natural map 6: @ Ha.% (i) —
i€l icl

Ha(@ Z(i)) is an isomorphism since {Z (i) | i € I} is A-small. If we have shown
il

§(B*) = H4(B), then é induces an isomorphism 6: M — H4(G) with dv; = H(p;)
for all i € I. This proves b).

Observe dpu;(a) = Ha(d:)(a) = d;a for all @ € Hu(F(i)). For every ¢ €
HaZ(s()\)) and a € A, we, hence, obtain

[dex(p)](a) = [0,y H A (@)](a) — dsonyela) = [0;0)F (A) = dsny)(p(a)) € B.

which shows §(B*) C H4(B). To establish the converse of this inclusion, we observe
that the group B is A-solvable by Lemma 2.1. We define a map 6: T4 (6(B*)) = B
by 6(a @ a) = a(a). The group B is generated by clements of the form [dy(»)F (X) —
dyn](x) where @ € F(s())). We choose ay,...,a, € Aand g1,...,00 € HAF (5(N))
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with @ = >~ pi(a;) and observe that
=1

n

BionF (A) = Sul(@) = 3 _[6ex(ei)(ai)] = 9( 3 [Ber(en)]) ® ai) € im#.

i=1 =1

This shows that 6 is onto. If e: §(B*) — Ha(B) is the inclusion-map. then

0T A(e) = 8 yields that T4 (g) is an epimorphism. Since the sequence T4(6(B*)) IA—& :)
TAHA(B) = Ta(Ha(B)/d(B*)) — 0 is exact, we obtain Ta(Ha(B)/6(B*))
which yields Ha(B) = §(B*) since A is faithfully flat as an E(A)-module.

b) = a): We consider the exact sequence 0 = B & @ Z (i) 4 G = 0. Since
i€l
{F (i) | i € I} is A-small, the center-term in the sequence is A-solvable, and the same
holds for B as an A-generated subgroup of an A-solvable group. By Lemma 2.1, it
is enough to show that the sequence is A-balanced.
Let ¢ € H4(G). Since Ha(G) = limHAf we have Ho(G) = (im H4(p:) | i € I).

n

We choose iy, ...,1, € [ and ¢; € HyF(i;) with ¢ = E[HA wi,))(W;) = Z @i, Y;.

n

For all a € A, we obtain ¢(a) = > ¢;;9;(a) = Z Yi(a) + B = Z Bv;(a). Hence,
j=1 j

w = Ha(B)(> ¥;), and the sequence is A-balanced. a
—~

In particular, the last result applies in the following situation:

Corollary 4.2. Let A be an abelian group which is faithfully flat as an E(A)-
module, and k a cardinal with |A| < ¢f(x). An abelian group G of cardinality & is
A-solvable if it is the union of an strictly ascending chain {G, | v < k}, of A-solvable
subgroups.

Proof. Lett,:G, - G and ¢: G, - G, for v < p be the inclusion maps.
Since G is the colimit in &b of the G, ’s, it is A-solvable by Theorem 4.1 once we have
shown that H4(G) is the colimit of the system {Ha(G,),Ha(¢#) | v < p < x}. To
simplify our notation we set U, = im H4(t,) C H4(G). The corresponding inclusions
are denoted by €, and €#. For all v < i < &, we have Ha(t,)Ha(t") = e Ha(v,)
and Ha(e,) =, Ha(L).

The family {U, | v < k} is an ascending chain of submodules of H4(G). If
@ € Ha(G), then ¢(A4) C G, for some v since |p(A)| < |A| < c¢f(k). Therefore, the
U,’s form an ascending chain whose union is H4(G). If M is a right E(A)-module
for which we can find maps o,: H4(G,) - M with 0,Hx(t#) = 0, then we have
o [Ha()]tet = 0,[Ha(t,)]™! since Ha(c,) is an isomorphism between Ha(G,)
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and U,. There is a unique map #: Hs(G) = M with e, = 0,[Ha(,)]”!. Thus.
o, = Pe,Ha(t,) = BHA(1,). To show the uniquencss of /3, assume yH (1) = o, for
all v < k. We have ye, = 0,[Ha(1,)]™! = Be,. Since 3 is unique with this property,
we obtain that H4(G) is the colimit of the system under consideration. a

Corollary 4.3. Let A be a self-small abelian group which is faithfully flat as an
E(A)-module. The following conditions are equivalent for an abelian group G':

a) G is not A-solvable.

b) If G is the union of a strictly ascending chain {G, | v < k} of A-solvable
subgroups, then Xg < cf (k) < |A].

We arc now able to prove the existence theorem for A-solvable groups:

Theorem 4.4. (ZFC + V) Let A be a sclf-small cotorsion-free abelian group
which is faithfully flat as an E(A)-module, S a cotorsion-free ring containing E(A)
such that S°Y € /74 as an E(A)-module and k a regular cardinal number with
x> sup{|A[,|S]}. There exist 2% pairwise non-isomorphic cotorsion-free A-solvable
groups G of cardinality x such that Hom(G,A) = 0 and E(G) = Cs(E(A)), the
centralizer of E(A) in S.

Proof. Let R be the opposite ring of S. By [10, Theorem 3.2], there exist
2% pairwise non-isomorphic cotorsion-free left R-modules A of cardinality ~ such
that R = E7(A). Morcover, M can be chosen in such a way that it has a s-
filtration {M, | ¥ < &} of free submodules (which is the way that Af has been
constructed in [10].) To show that G = T4 (M) is A-solvable, we set G, = Ta(M,).
Since S°P € ./#,, we obtain that G, is A-solvable. The family {G, | v < r} is a
smooth ascending chain whose union is G. We observe |G, | < No|A| [M,| < & and
Gui1/Gy = Ta(My41/M,) is non-zero since A is faithful. Thus, G has cardinality
K, and is A-solvable.

By the Adjoint-Functor-Theorem, the map

Ya: E7(G) = Hompa) (M, HATA(M)),

which is defined by [[Ya(p)](m)](a) = (@ a) = [pear(n)](a), is an isomorphismi.
Since A is faithfully flat as an E(A)-module, M € ./Z(A) by [6]. Hence, there is
an induced isomorphism o: Homp(ay(M, HATA(M)) = Epza)(M) which is defined
by o(a) = gox,la. The composition of these two isomorphism satisfies oyg(a) =
@X}mpM for all ¢ € Ez(G). Hence, Ez(G) = Egay(Mga)) = Er(rM) = Cs(RR)
as rings.

Assume Hom(G,A4) # 0. We write G, = EB,\ Tx(R) and observe K, <
|, Hom(G, A)| < |[Hom(G,G,)| < |E(G)| < k. On the other hand, [Ta(R)] < »
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vields sup{n, | v < k} = n. The resulting contradiction shows Hom(G, A) = 0.
Finally, since A is faithfully flat and G = T4 (M), [6] guarantees that non-isomorphic
choices for M yield non-isomorphic groups G. a

The condition that S°P € ./#Z4 is, for instance, satisfied if S is contained in a free
E(A)-module, e.g. S C E(A)[z] or S C Mat, (E(A)) for some n < w, or S is an
E(A)-order in the case that QE(A) is semi-simple Artinian. In the latter case, we
obtain additional insights in the structurc of A-solvable abelian groups:

Corollary 4.5. Let A be a torsion-free abelian group which is faithfully flat as
an E(A)-module and has a semi-simple Artinian quasi-endomorphism ring. The
following conditions arc equivalent for a torsion-free abelian group G with ro(A)) <
cf(IG]):

a) G is A-solvable.

b) G is the union of a smooth, strictly ascending chain of pure A-solvable sub-

groups.

Proof. a) = b): Choose an essential submodule M of H4(G) which is the

direct sum of cyclic submodules, say M = @ U,. We set My = @ U, and denote
v v<a

its Z-purification in H4(G) by N,. Since G is A-solvable, Ha(G) € .# 4. Morcover,

.4 is closed with respect to submodules by [6]. Thus, setting G, = TA(N,) yields

a smooth ascending chain of subgroups of G such that G/G, = T4(Ha(G)/N,) is a

torsion-free abelian group.

b) = a): Let X C A be a subset with |X| = ro(A4) and A/ (X) torsion. If
v € Ha(G), then there is v < & with p(X) C G,. Since G, is pure in G, we obtain
#(4) € G, and H(G) is the union of the modules HA(G,). As in the proof of
Corollary 4.2, G is A-solvable. O
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