Previous |  Up |  Next

Article

References:
[1] S. Bellenot: The Schwartz-Hilbert variety. Mich. Math. J. 22 (1975), 373–377. MR 0394086 | Zbl 0308.46002
[2] A. Grothendieck: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. 16 (1955). MR 0075539 | Zbl 0123.30301
[3] H. Jarchow: Locally convex spaces. Teubner-Verlag, 1981. MR 0632257 | Zbl 0466.46001
[4] H. Jarchow: On Hilbert-Schmidt spaces. Rend. Circ. Mat. Palermo (Suppl.) II (1982), no. 2, 153–160. MR 0683777 | Zbl 0503.46014
[5] H. Jarchow: Remarks on a characterization of nuclearity. Arch. Math. 43 (1984), 469–472. DOI 10.1007/BF01193856 | MR 0773196 | Zbl 0537.46008
[6] K. John: Zwei Charakterisierungen der nuklearen lokalkonvexen Räume. Comment. Math. Univ. Carolinae 8 (1967), 117–128. MR 0215047 | Zbl 0146.36501
[7] K. John: Counterexample to a conjecture of Grothendieck. Math. Ann. 265 (1983), 169–179. DOI 10.1007/BF01460797 | MR 0719135 | Zbl 0506.46053
[8] K. John: On the compact non-nuclear problem. Math. Ann. 287 (1990), 509–514. DOI 10.1007/BF01446908 | MR 1060689
[9] K. John: On the space ${\mathcal K}(P,P^*)$ of compact operators on Pisier space $P$. Note di Mat (to appear). MR 1258564
[10] A. Pietsch: Nukleare lokalkonvexe Räume. Akademie-Verlag, 1969. MR 0181888 | Zbl 0184.14602
[11] A. Pietsch: Operator ideals. VEB Deutscher Verlag der Wissenschaften, 1978. MR 0519680 | Zbl 0405.47027
[12] G. Pisier: Counterexample to a conjecture of Grothendieck. Acta Math. 151 (1983), 180–208. DOI 10.1007/BF02393206 | MR 0723009
Partner of
EuDML logo