[2] Agmon, S., Douglis, A., Nirenberg, L.:
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math. 12 (1959), 623–727.
DOI 10.1002/cpa.3160120405 |
MR 0125307
[3] Agmon, S., Douglis, A., Nirenberg, L.:
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math. 17 (1964), 35–92.
DOI 10.1002/cpa.3160170104 |
MR 0162050
[4] Amrouche, C.:
Propriétés d’opérateurs de dérivation. Application au problème non homogène de Stokes. CRAS 310 Série I (1990), 367–370.
MR 1046514 |
Zbl 0698.46035
[5] Amrouche, C., Girault, V.:
On the existence and regularity of the solution of the Stokes problem in arbitrary dimension. Proc. of the Japan Ac. 67 Ser. A (1991), no. 5, 171–175.
MR 1114965
[6] Amrouche, C., Girault, V.: Propriétés fonctionnelles d’opérateurs. Application au problème de Stokes en dimension quelconque, Report n. 90025, LAN-UPMC, 1990.
[7] Amrouche, C., Girault, V.:
Problèmes généralisés de Stokes. Potugal. Math. 49 4 (1992), 463–503.
MR 1300580
[9] Bogovskii, M.E.:
Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Soviet Math. Dokl. 20 (1979), 1094–1098.
MR 0553920
[10] Bogovskii, M.E.:
Solution of some vector analysis problems connected with operators $\mathop {\mathrm div}\nolimits $ and $\mathop {\mathrm grad}$. Trudy Seminar, N.L. Sobolev, 80 (1980), no. 1, Akademia Nauk SSSR, Sibirskoe Otdelenie Matematiki, Novosibirsk, 5–40. (Russian)
MR 0631691
[11] Borchers, W., Sohr, H.:
On the equation $v = g$ and $\mathop {\mathrm div}\nolimits u = f$ with zero boundary conditions. Hokkaido Math. J. 19 (1990), 67–87.
DOI 10.14492/hokmj/1381517172 |
MR 1039466
[12] Brezzi, F.:
On the existence, uniqueness and approximation of saddle-points problems arising from Lagrange multipliers. R.A.I.R.O., Anal. Numer. R2 (1974), 129–151.
MR 0365287
[13] Cattabriga, L.:
Su un problema al contorno relativo al sistema di equazoni di Stokes. Rend. Sem. Univ. Padova 31 (1961), 308–340.
MR 0138894
[14] Dautray, R., Lions, J.L.: Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, vol. 3 and vol. 7. Masson, 1988.
[15] Fujiwara, D., Morimoto, H.:
An ${\mathbf L}_r$-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo 24 (1977), 685–700.
MR 0492980
[16] Galdi, G.P., Simader, C.G.:
Existence, uniqueness and $L^q$-estimates for the Stokes problem in an exterior domain. Arch. Rat. Mech. Anal. 112 (1990), 291–318.
DOI 10.1007/BF02384076 |
MR 1077262
[19] Giga, Y.:
Analyticity of the semigroup generated by the Stokes operator in $L_r$ spaces. Zeitschrift, (1981), 297–329.
MR 0635201 |
Zbl 0473.35064
[20] Girault, V., Raviart, P.A.:
Finite Element Methods for Navier-Stokes Equations. Springer Series SCM, 1986.
MR 0851383
[21] Grisvard, P.:
Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Math. vol. 24, Pitman, 1985.
MR 0775683
[22] Héron, B.:
Quelques propriétés des applications de traces dans des espaces de champs de vecteurs à divergence nulle. C.P.D.E. 6 (12) (1981), 1301–1334.
DOI 10.1080/03605308108820212 |
MR 0640159
[23] Kozono, H., Sohr, H.: $L^q$-regularity theory of the Stokes equations in exterior domains, Preprint, Universität Paderborn. 1981.
[24] Lions, J.L.:
Quelques Méthodes de Résolution des Problèmes aux Limites Non-Linéaires. Gauthier-Villars, 1969.
MR 0259693 |
Zbl 0189.40603
[25] Lions, J.L., Magenes, E.:
Problemi ai limiti non homogenei (III). Ann. Scuola Norm. Sup. Pisa 15 (1961), 41–103.
MR 0146526
[26] Magenes, E., Stampacchia, G.:
I problemi al contorno per le equazioni di tipo ellittico. Ann. Scuola. Norm. Sup. Pisa. 12 (1958), 247–357.
MR 0123818
[27] Nečas, J.: Equations aux Dérivées Partielles. Presses de l’Univ. de Montréal, 1966.
[28] Nečas, J.:
Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris, 1967.
MR 0227584
[29] Peetre, J.:
Espaces d’interpolation et théorème de Sobolev. Annales de l’Institut Fourier 16 (1966), 279–317.
DOI 10.5802/aif.232 |
MR 0221282
[30] De Rham, G.: Variétés Différentiables, Hermann. 1960.
[31] Simon, J.: Primitives de distributions et applications. Séminaire d’Analyse, Clermont-Ferrand, 1992.
[32] Simon, J.: Private Communication.
[33] Solonnikov, V.A.:
Estimates in $L_p$ of solutions of elliptic and parabolic systems. Proc. Steklov Inst. Math. 102 (1967), 157–185.
MR 0228809
[34] Tartar, L.: Nonlinear Partial Differential Equations using Compactness Methods, Report 1584. Mathematics Research Center, Univ. of Wisconsin, Madison, 1975.
[35] Tartar, L.: Topics in Non Linear Analysis. Publications Mathématiques d’Orsay, 1978.
[37] Temam, R.:
Navier-Stokes Equations. Theory and Analysis. North-Holland, Amsterdam, 1985.
MR 0603444
[38] von Wahl, W.: Vorlesung über das Aussenraumproblem für die Instationären Gleichungen von Navier-Stokes, vol. 11. Sonderforschungsbereich 256. Nichtlineare Partielle Differentialgleichungen, 1989.
[39] Yosida, K.:
Functional Analysis. Springer-Verlag, Berlin, 1965.
Zbl 0126.11504
[40] Yudovich, V.I.: Periodic solutions of viscous incompressible fluids. Dokl. Akad. Nauk SSSR 130 (1960), .