Previous |  Up |  Next

Article

References:
[1] Adams, R.: Sobolev Spaces. Academic Press, New York, 1975. MR 0450957 | Zbl 0314.46030
[2] Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math. 12 (1959), 623–727. DOI 10.1002/cpa.3160120405 | MR 0125307
[3] Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math. 17 (1964), 35–92. DOI 10.1002/cpa.3160170104 | MR 0162050
[4] Amrouche, C.: Propriétés d’opérateurs de dérivation. Application au problème non homogène de Stokes. CRAS 310 Série I (1990), 367–370. MR 1046514 | Zbl 0698.46035
[5] Amrouche, C., Girault, V.: On the existence and regularity of the solution of the Stokes problem in arbitrary dimension. Proc. of the Japan Ac. 67 Ser. A (1991), no. 5, 171–175. MR 1114965
[6] Amrouche, C., Girault, V.: Propriétés fonctionnelles d’opérateurs. Application au problème de Stokes en dimension quelconque, Report n. 90025, LAN-UPMC, 1990.
[7] Amrouche, C., Girault, V.: Problèmes généralisés de Stokes. Potugal. Math. 49 4 (1992), 463–503. MR 1300580
[8] Babuška, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973), 179–192. DOI 10.1007/BF01436561 | MR 0359352
[9] Bogovskii, M.E.: Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Soviet Math. Dokl. 20 (1979), 1094–1098. MR 0553920
[10] Bogovskii, M.E.: Solution of some vector analysis problems connected with operators $\mathop {\mathrm div}\nolimits $ and $\mathop {\mathrm grad}$. Trudy Seminar, N.L. Sobolev, 80 (1980), no. 1, Akademia Nauk SSSR, Sibirskoe Otdelenie Matematiki, Novosibirsk, 5–40. (Russian) MR 0631691
[11] Borchers, W., Sohr, H.: On the equation $v = g$ and $\mathop {\mathrm div}\nolimits u = f$ with zero boundary conditions. Hokkaido Math. J. 19 (1990), 67–87. DOI 10.14492/hokmj/1381517172 | MR 1039466
[12] Brezzi, F.: On the existence, uniqueness and approximation of saddle-points problems arising from Lagrange multipliers. R.A.I.R.O., Anal. Numer. R2 (1974), 129–151. MR 0365287
[13] Cattabriga, L.: Su un problema al contorno relativo al sistema di equazoni di Stokes. Rend. Sem. Univ. Padova 31 (1961), 308–340. MR 0138894
[14] Dautray, R., Lions, J.L.: Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, vol. 3 and vol. 7. Masson, 1988.
[15] Fujiwara, D., Morimoto, H.: An ${\mathbf L}_r$-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo 24 (1977), 685–700. MR 0492980
[16] Galdi, G.P., Simader, C.G.: Existence, uniqueness and $L^q$-estimates for the Stokes problem in an exterior domain. Arch. Rat. Mech. Anal. 112 (1990), 291–318. DOI 10.1007/BF02384076 | MR 1077262
[17] Geymonat, G.: Sui problemi ai limiti per i sistemi lineari ellittici. Ann. Mat. Pura Appl. (4) 69 (1965), 207–284. DOI 10.1007/BF02414374 | MR 0196262
[18] Ghidaglia, J.M.: Régularité des solutions de certains problèmes aux limites linéaires liés aux équations d’Euler. C. P.D.E. (9) 13 (1984), 1265–1298. DOI 10.1080/03605308408820363 | MR 0764664 | Zbl 0602.35093
[19] Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in $L_r$ spaces. Zeitschrift, (1981), 297–329. MR 0635201 | Zbl 0473.35064
[20] Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations. Springer Series SCM, 1986. MR 0851383
[21] Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Math. vol. 24, Pitman, 1985. MR 0775683
[22] Héron, B.: Quelques propriétés des applications de traces dans des espaces de champs de vecteurs à divergence nulle. C.P.D.E. 6 (12) (1981), 1301–1334. DOI 10.1080/03605308108820212 | MR 0640159
[23] Kozono, H., Sohr, H.: $L^q$-regularity theory of the Stokes equations in exterior domains, Preprint, Universität Paderborn. 1981.
[24] Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non-Linéaires. Gauthier-Villars, 1969. MR 0259693 | Zbl 0189.40603
[25] Lions, J.L., Magenes, E.: Problemi ai limiti non homogenei (III). Ann. Scuola Norm. Sup. Pisa 15 (1961), 41–103. MR 0146526
[26] Magenes, E., Stampacchia, G.: I problemi al contorno per le equazioni di tipo ellittico. Ann. Scuola. Norm. Sup. Pisa. 12 (1958), 247–357. MR 0123818
[27] Nečas, J.: Equations aux Dérivées Partielles. Presses de l’Univ. de Montréal, 1966.
[28] Nečas, J.: Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris, 1967. MR 0227584
[29] Peetre, J.: Espaces d’interpolation et théorème de Sobolev. Annales de l’Institut Fourier 16 (1966), 279–317. DOI 10.5802/aif.232 | MR 0221282
[30] De Rham, G.: Variétés Différentiables, Hermann. 1960.
[31] Simon, J.: Primitives de distributions et applications. Séminaire d’Analyse, Clermont-Ferrand, 1992.
[32] Simon, J.: Private Communication.
[33] Solonnikov, V.A.: Estimates in $L_p$ of solutions of elliptic and parabolic systems. Proc. Steklov Inst. Math. 102 (1967), 157–185. MR 0228809
[34] Tartar, L.: Nonlinear Partial Differential Equations using Compactness Methods, Report 1584. Mathematics Research Center, Univ. of Wisconsin, Madison, 1975.
[35] Tartar, L.: Topics in Non Linear Analysis. Publications Mathématiques d’Orsay, 1978.
[36] Taylor, A.: Introduction to Functional Analysis. Wiley, New York, 1958. MR 0098966 | Zbl 0081.10202
[37] Temam, R.: Navier-Stokes Equations. Theory and Analysis. North-Holland, Amsterdam, 1985. MR 0603444
[38] von Wahl, W.: Vorlesung über das Aussenraumproblem für die Instationären Gleichungen von Navier-Stokes, vol. 11. Sonderforschungsbereich 256. Nichtlineare Partielle Differentialgleichungen, 1989.
[39] Yosida, K.: Functional Analysis. Springer-Verlag, Berlin, 1965. Zbl 0126.11504
[40] Yudovich, V.I.: Periodic solutions of viscous incompressible fluids. Dokl. Akad. Nauk SSSR 130 (1960), .
Partner of
EuDML logo