Previous |  Up |  Next

Article

References:
[1] R.A. Horn, Ch.R. Johnson: Matrix Analysis. Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne and Sydney, 1986. MR 1084815
[2] A. Lešanovský: Coefficients of ergodicity generated by non-symmetrical vector norms. Czechoslovak Math. J. 40 (115) (1990), 284–294. MR 1046294
[3] R. Kühne, A. Rhodius: A characterization of Dobrushin’s coeffiecient of ergodicity. Zeitschrift für Analysis und ihre Anwendungen 9 (2) (1990), 187–188. DOI 10.4171/ZAA/392 | MR 1063254
[4] U.G. Rothblum, C.P. Tan: Upper bounds on the maximum modulus of subdominant eigenvalues of nonnegative matrices. Linear Algebra Appl. 66 (1985), 45–86. DOI 10.1016/0024-3795(85)90125-9 | MR 0781294
[5] W. Rudin: Real and Complex Analysis. McGraw-Hill, Inc. New York, 1974. MR 0344043 | Zbl 0278.26001
[6] E. Seneta: Coefficients of ergodicity: structure and applications. Adv. Appl. Prob. 11 (1979), 576–590. DOI 10.2307/1426955 | MR 0533060 | Zbl 0406.60060
[7] E. Seneta: Spectrum localization by ergodicity coefficients for stochastic matrices. Linear and Multilinear Algebra 14 (1983), 343–347. DOI 10.1080/03081088308817569 | MR 0724382 | Zbl 0526.15013
[8] E. Seneta, C. P. Tan: The Euclidean and Frobenius ergodicity coefficients and spectrum localization. Bull. Malaysia Math. Soc. (7) 1 (1984), 1–7. MR 0767334
[9] C.P. Tan: Coefficients of ergodicity with respect to vector norms. J. Appl. Prob. 20 (1983), 277–287. DOI 10.2307/3213801 | MR 0698531 | Zbl 0515.60072
[10] C.P. Tan: Spectrum localization of an ergodic stochastic matrix. Bull. Inst. Math. Acad. Sinica 12 (1984), 147–151. MR 0765108 | Zbl 0551.15009
[11] C.P. Tan: Spectrum localization using Hölder norms. Houston J. Math. 12 (1986), 441–449. MR 0869127 | Zbl 0613.15013
Partner of
EuDML logo