Previous |  Up |  Next

Article

References:
[1] J. M. Boardman, R. M. Vogt: Homotopy invariant algebraic structures on topological spaces. LNM, no. 347, Berlin-Heidelberg-New York, 1973. MR 0420609
[2] A. Borel: Sur la cohomologie des espaces fibres principaux et des espaces homogenes de groupes de Lie compacts. Annals of Math. 57 (1953), 115–207. DOI 10.2307/1969728 | MR 0051508 | Zbl 0052.40001
[3] A. Borel, F. Hirzebruch: Characteristic classes and homogeneous spaces 1. Amer. J. Math. 80 (1958), 459–538. MR 0102800
[4] A. K. Bousfield, V. K. A. M. Guggenheim: On PL de Rham theory and rational homotopy type. Memoirs Amer. Math. Soc. 8(179) (1976). MR 0425956
[5] D. Burghelea: Cyclic homology and the algebraic $K$-theory of spaces 1. Contemp. Math. 55 (1986), 89–115. MR 0862632
[6] D. Burghelea, Z. Fiedorowicz: Cyclic homology and algebraic $K$-theory of spaces 2. Topology 25 (1986), 303–317. DOI 10.1016/0040-9383(86)90046-7 | MR 0842427
[7] A. Connes: De Rham homology and non-commutative algebra. Publ. Math. IHES 62 (1985), 94–144.
[8] A. Connes: Cohomologie cyclique et founkteur Ext$^n$. C. r. Acad. Sci. Paris, Ser. A 296 (1983), 953–958. MR 0777584
[9] A. Connes, H. Moscovici: Cyclic homology, the Novikov conjecture and hyperbolic groups. Topology 29 (1990), 345–388. DOI 10.1016/0040-9383(90)90003-3 | MR 1066176
[10] K. Doan: Poicaré polynomials of compact homogeneous Riemannian spaces with irreducible isotropy subgroup. Trudy Semin. Vect. Tens. Anal. 14 (1968), 33–93. (Russian) MR 0274665
[11] M. El-Hauari: Cohomologie de Hochschild et $k$-formalite intrinseque. C. r. Acad. Sci. Paris, Ser. 1 310 (1990), 731–734. MR 1055238
[12] T. Goodwillie: Cyclic homology, derivations and the free loop space. Topology 24 (1985), 187–215. DOI 10.1016/0040-9383(85)90055-2 | MR 0793184
[13] V. Greub, S. Halperin, R. Vanstone: Curvature, connections and cohomology, v. 3. Academic Press, New York, 1976.
[14] P. Griffiths, J. Morgan: Rational homotopy theory and differential forms. Birkhäuser, Boston, 1981. MR 0641551
[15] S. Halperin, M. Vigué-Poirrier: The homology of a free loop space. Pacif. J. Math. 147 (1991), 311–324. DOI 10.2140/pjm.1991.147.311 | MR 1084712
[16] M.-C. Heidemann-Tcherkez, M. Vigué-Poirrier: Application de la theorie des polynomes de Hilbert-Samuel a l’etude de certaines algebres differentielles. C. r. Acad. Sci. Paris, Ser. A 278 (1974), 1607–1610. MR 0366902
[17] S. Helgason: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York, 1978. MR 0514561 | Zbl 0451.53038
[18] Y. Kihoon: Almost complex homogeneous spaces and their submanifolds. World Scientific, Singapoor, 1987. MR 0938098
[19] R. Krasauskas: Certain topological applications of dyhedral homology. Ph.D. Thesis, Moscow University, 1987. (Russian)
[20] D. Lehmann: Theorie homotopique des formes differentielles (d’apres D. Sullivan). Societe mathematique de France, Asterisque 45 (1977). MR 0488041
[21] P. Rashevskii: On real cohomology of homogeneous spaces. Uspekhi Mat. Nauk 24(3) (1969), 23–90. (Russian)
[22] M. Vigué-Poirrier, D. Burghelea: A model for cyclic homology and algebraic $K$-theory of 1-connected topological spaces. J. Diff. Geom. 22 (1985), 243–253. DOI 10.4310/jdg/1214439821 | MR 0834279
[23] M. Vigué-Poirrier, D. Burghelea: Cyclic homology of commutative algebras. Publ. IRMA–Lille 8(1) (1987).
[24] M. Vigué-Poirrier: Cyclic homology of algebraic hypersurfaces. Publ. IRMA–Lille 10(7) (1987).
[25] M. Vigué-Poirrier: Cyclic homology and Quillen homology of a commutative algebra. Publ. IRMA–Lille 5(1) (1986).
[26] M. Vigué-Poirrier: Homologie de Hochschild et homologie cyclique des algebres differentielles graduees. Publ. IRMA–Lille 17(1) (1989). MR 1098974
[27] E. Witten: The index of a Dirac operator in loop space. LNM, no. 1326, 1986, pp. 161–181. MR 0970288
[28] A. E. Tralle: Cyclic homology of certain topological spaces which are formal in the sense of Sullivan. Matem. Zametki 50(6) (1991), 131–141, English transl. in “Math. Notes”. (Russian) MR 1150643
Partner of
EuDML logo