Previous |  Up |  Next

Article

References:
[1] M. Čadek, J. Vanžura: On oriented vector bundles over CW-complex of dimension 6 and 7. preprint (1991). MR 1240195
[2] A. Dold, H. Whitney: Classification of oriented sphere bundles over a 4-complex. Ann. of Math. 69 (1959), 667–677. DOI 10.2307/1970030 | MR 0123331
[3] I. James, E. Thomas: An approach to the enumeration problem for non-stable vector bundles. J. Math. Mech. 14 (1965), 485–506. MR 0175134
[4] J. Milnor: Some consequences of a theorem of Bott. Ann. of Math. 68 (1958), 444–449. DOI 10.2307/1970255 | MR 0102805 | Zbl 0085.17301
[5] R. E. Mosher, M. C. Tangora: Cohomology operations and applications in homotopy theory. Harper & Row, Publishers, New York, Evanston and London, 1968. MR 0226634
[6] Tze–Beng Ng: On the geometric dimension of vector bundles, span of a manifold and immersion of manifolds in manifolds. Exposition. Math. 8 (1990), 193–226. MR 1062767
[7] E. Thomas: On the cohomology of the real Grassmann complexes. Trans. Amer. Math. Soc. 96 (1960), 67–89. MR 0121800 | Zbl 0098.36301
[8] E. Thomas: Homotopy classification of maps by cohomology homomorphisms. Trans. Amer. Math. Soc. 111 (1964), 138–151. DOI 10.1090/S0002-9947-1964-0160212-4 | MR 0160212 | Zbl 0119.18401
[9] E. Thomas: Seminar on fibre bundles. Lecture Notes in Math., no. 13, Springer, Berlin-Heidelberg-New York, 1966. MR 0203733
[10] E. Thomas: Postnikov invariants and higher order cohomology operation. Ann. of Math. 85 (1967), 184–217. DOI 10.2307/1970439 | MR 0210135
[11] E. Thomas: Fields of tangent $k$-planes on manifolds. Invent. Math. 3 (1967), 334–347. DOI 10.1007/BF01402957 | MR 0217814 | Zbl 0162.55402
[12] E. Thomas: Vector fields on low dimensional manifolds. Math. Z. 103 (1968), 85–93. DOI 10.1007/BF01110620 | MR 0224109 | Zbl 0162.55403
[13] L. M. Woodward: The classification of orientable vector bundles over CW-complexes of small dimension. Proc. Roy. Soc. Edinburgh 92A (1982), 175–179. MR 0677482 | Zbl 0505.55017
Partner of
EuDML logo