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Czechoslovak Matheшatical Journal, 43 (118) 1993, Praha 

ON T H E CLASSIFICATION O F O R I E N T E D V E C T O R BUNDLES 

OVER 5-COMPLEXES 

MARTIN CADEK, JIRI VANZURA, Brno 

(Received July 7, 1992) 

1. INTRODUCTION 

The effort to classify vector bundles over a fixed CW-complex has a long history. 

T h e first result in this direction is the assertion that every two-dimensional oriented 

vector bundle is uniquely determined by its Euler class. Complete characterization of 

oriented vector bundles over a 4-dimensional CW-complex was given in [2] using the 

difference cocycles. In [8] E. T h o m a s found conditions for a mapping / G [X, Y] to be 

uniquely determined by its cohomology homomorphism /* G Hom(H*(Y), H*(N)) 

under the assumptions that X is a suspension or Y is an H-space. He also applied 

the result to Y = HO, the classifying space for the group O, and so he obtained con­

ditions on H*(X) under which stable vector bundles over X are determined by their 

Stiefel-Whitney and Pontrjagin classes. A further progress was made in [3] where the 

question how many n-dimensional vector bundles over a CW-complex of the same 

dimension are determined by a stable vector bundle £. The results are given in terms 

of £ and they allow successful application for n = 3 and 7. Earlier results concern­

ing characterization of oriented vector bundles over low dimensional complexes were 

summarized and completed in [13]. Using elementary homotopy theoretic methods 

and relations among characteristic classes L. M. Woodward has given the classifica­

tion of stable oriented vector bundles over CW-complexes of dimension ^ 8 and the 

classification of n-dimensional oriented vector bundles over CW-complexes of dimen­

sion n for n = 3,4, 6, 7, 8, both in terms of characteristic classes. A typical condition 

on a CW-complex X to admit such a classification is: H4(K, Z) has no element of 

order 4. 

In dimension 5 the situation is much more complicated as can be seen on the 

example of the sphere 5 5 . Both the trivial and the tangent bundle over S5 have 

all characteristic classes equal to zero. Moreover, all conditions of Woodward's type 

are satisfied. The aim of our paper is to derive necessary and sufficient conditions 
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on a 5-dimensional CW-complex X which make the classification of 5-dimensional 

oriented vector bundles over X in terms of characteristic classes possible. This is 

carried out in Section 3 using a combination of the method of Postnikov tower and 

the Woodward method (see [9] and [13]). 

The maximal number of linearly independent sections in a vector bundle £ is de­

fined to be the span of! ; . As a consequence of the classification described above 

we compute the span of 5-dimensional oriented vector bundles over CW-complexes 

of the same dimension . These results complete computations of Thomas for tan­

gent bundles over 5-dimensional manifolds given in [12] and also our results for the 

dimensions 6 and 7 obtained in [1]. Together with results on the existence of a 2-

distribution and a 4-distribution with a complex structure they form the contents of 

Section 4 . 

2. P R E L I M I N A R I E S 

All vector bundles will be considered over a connected CW-complex X and will 

be oriented. The letter e will stand for the trivial one-dimensional vector bundle. 

The mapping/?*. : H*(K, Zk) —+ H*(K, Z) is the Bockstein homomorphismassociated 

with the exact sequence 0—>Z—• Z —» Z^ —-• 0. The mappings i+: H*(X,Z2) —• 

H*(X,Z4) and Qk : H*(K,Z) —• H*(K, Zfc) are induced from the inclusion Z2 —• Z4 

and reduction mod k, respectively. 

An important role in our considerations is played by the Pontrjagin square *P, a 

cohomology operation from H2k(X,Z2) into H4k(X} Z4) satisfying the relations 

(1) ¥Q2X = Q4X
2, 

(2) <p(u + v) = <$u + ypv + u(u • v), 

for x e H2k(X,Z) and u,v e H2k(X,Z2). See [5], chapter 2. 

We will use iv j ( 0 f ° r the j-th Stiefel-Whitney class of the vector bundle £, p i ( 0 

for the first Pontrjagin class, and e ( 0 for the Euler class. For a complex vector 

bundle £ the symbol Cj(Q denotes the j-th Chern class. The letters uv;, p 1 ? e s tand 

for characteristic classes of the universal oriented n-dimensional vector bundle over 

the classifying space BSO(n). Our results given below are based on the following 

relations among the characteristic classes: 

(3) £ 4 P i ( 0 = ^ 2 ( 0 + * W O , 

(4) M O = Sq2w4(£) + w2(t)w4(0, 

the former being proved in [4] and [7] and the latter being a special case of the Wu 

formula. 

754 



The Eilenberg-MacLane space with the n-th homotopy group G will be denoted 
by K(G,n) and in will stand for the fundamental class in Hn(K(G, n), G). Writing 
the fundamental class it will be always clear which group G we have in mind. 

In the proof of Theorem 1 we will need suspension. Being defined for every fi-

bration F •--* E -^ B, it is a natural mapping from a subgroup of Hk+X(B) into 

Hk(F)/ imj* which commutes with the Steenrod squares and i* (see [5]). 
We say that x E H*(K, Z) is an element of order k (k = 2, 3, 4, . . .) if and only if 

x -̂  0 and k is the least positive integer such that kx = 0 (if it exists). Some results 
will involve the following hypotheses: 

Condition (A). H4(K,Z) has no element of order 4. 

Condition (B) . Sq2H3(X,l2) = H5(K,Z2). 

Remark. An important example of a CW-complex which satisfies Condition (B) 
is a 5-dimensional oriented smooth manifold M with w2(M) ^ 0. The Poincare 
duality and the fact that the second Wu class is equal to w2(M) yields 

Sq2H3(M} Z2) = w2(M)H3(M, Z2) = H5(M, Z2). 

3. CLASSIFICATION THEOREM 

Let X be a connected CW-complex of dimension -$ 5. Our problem consists 
in finding conditions on X such that for every a G H2(K,Z2), 6 £ H4(K,Z2), 
c £ H4(K,Z) there is at most one oriented 5-dimensional vector bundle £ with 
w2(£) = a> W4OO = by pi(£) = c. A necessary and sufficient condition on a, 6, 
c for the existence of such a vector bundle derived in [W] is given by the relation 
Q±C = *pa + ub (see (3)). Up to homotopy there is just one mapping / : X —• 
K(Z2,2) x K(Z2,4) x K(Z,4) such that f*(t2 ® 1 ® 1) = a, /*(1 ® £4 ® 1) = *, 
/*(1<8>1<8)*4) = c. Similarly, tv2, tv4, p1? the cohomology classes of 5 5 0 ( 5 ) , determine 
a mapping a : BSO(5) —• K(Z2,2) x K(Z2,4) x K(Z,4) which can be considered to 
be a fibration. Now the problem described above can be formulated as a problem of 
lifting: when every mapping f: X —• K(Z2,2) x I\(Z2,4) x K(Z,4) has at most one 
lifting £ : X —> BSO(b) in the fibration a. 

55o (5 ) 

X f >AҶZ2,2) x Л'(Z2,4) x K(l,4) 
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To solve this problem we will construct a Postnikov tower for the fibration a: 

1350(5) -> K(Z2,2) x K(Z2,4) x K(Z,4). Put K = K(Z2,2) x K(Z2,4) x K(Z,4) 

and denote the fibre of a by V. Let us recall that 7r^(H50(5)) = 0 for k = 1, 

3, 7r fc(H50(5)) t= Z2 for k = 2,5 and 7r4(H50(5)) 9_ Z. Considering the char­

acteristic classes as mappings from BSO(b) into appropriate Eilenb erg-Mac Lane 

spaces, we get iv2* = id: 7r2(H50(5)) —• Z2 , iv4* = D2: 7r 4 (B50(5)) —• Z2 , and pi* : 

7r4(H50(5)) —• Z is a multiplication by 2. See [13]. From the long exact homotopy 

sequence we compute: *\(V) = 7r2(V) = 0, 7r3(V) =- Z4 , 7r4(V) =. 0, and 7r5(V) = Z 2 . 

The first invariant in the Postnikov tower is the transgression of a fundamental class 

in H3(V, Z 4 ) . It is a generator of kera* C H4(A',Z4). Hence it is equal to 

D4(l Cg) 1 (g> L4) - <pt2 Cg) 1 (g 1 - 1 (g> ULA (g) 1. 

Let E\ be the first stage of the Postnikov tower and let the new mappings be denoted 

according to the diagram. 

h 

ғ 

V 

a 

ßx K{ZA,S) 

»i 

i > BSO(Ъ) —-^ > E\ 

тгi 

K 
£ 4 ( l l<Э'4)-фt2<8>l<8>l-l<8>**í4<8>l 

Л'(Z 4 ,4) 

Consider (3\ : H50(5) —• E\ as a fibration with a fibre F\. This fibre is homotopy 

equivalent to the homotopy fibre Fi of the mapping /Ji (see [9]). Hence computing the 

homotopy groups of Fi we get that Fi is 4-connected and ^ ( F i ) = Z 2 . Consequently, 

/3\ is a 5-equivalence. 

T h e next invariant (p E H6(E\,Z2) is the transgression of the generator of 

H5(Fi,Z2) in the Serre exact sequence for the fibration /3\. E\ is also the first 

stage in the Postnikov tower for the fibration a: 2950(6) —• K determined by iv2, 

w4 and p\. The mapping/J i : BSO(Q) —• E\ in this Postnikov tower is a 6-equivalence 

(since 7T5(H50(6)) = 0). Using the Serre exact sequence for the fibration 0\, we 

get t h a t /?* is an isomorphism between H6(E\,Z2) and H6(H50(6), Z 2 ) . The latter 

group has generators w\, w\, w2w4 and Sq2w4(= WQ-\-W2W4). Hence the generators 

of H6(Fi,Z2) are TTJ(^<g)l(g)l), ir\((5gl*2)
2cg>l(g>l), 7T*\(L2®L4®\), 7 r 1 ( l c g ) 5 a 2 t 4 0 l ) . 

T h e mapping /3\ : He(E\, Z 2 ) —• i / 6 ( H 5 0 ( 5 ) , Z 2 ) maps them into iv2, iv | , w2w4 and 

Sq2w4 = w2w4l respectively. Consequently, using the Serre exact sequence for the 

fibration f3\ we get </? = K\(L2 (g) L4 eg) 1 + 1 <g> Sq2L4 eg) 1). So we can build the second 
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stage E2 of our Postnikov tower 

F2 • f\ -

5 5 0 ( 5 ) 

Ei = 

02 

02 

•tf(Z 2 ,5) 

I" 
— F2 

U2 
„ 7r;(t2(g)t4(8)l + l(8)S</2t4<8)l) „ , - , fiv 

= Ki • A ( Z 2 | 6 ) 

Let the notat ion of new mappings accord with the diagram . We can consider (32 to 
be a fibration with a fibre F2. Similarly as for the first stage, we can compute the 
homotopy groups of F2. So we get that F2 is 5-connected and /?2 is a 6-equivalence. 

Let C = I\(Z4,4) x Iv(Z2,6). Up to homotopy there is just one mapping k = 

(k i , k2): K —• C given by 

k*(^4) = 1 ® 1 ® D4t4 - <p*2 ® 1 ® 1 +-1 ® ntA ® 1 

k2(te) = * 2 ® * 4 ® 1 + 1 ® Sq2t4 ® 1. 

Due to Lemma 8.1 in [10], there is a homeomorphism g: E2 —• E where 7r: E —• K 
is a principal fibration with the classifying map k: K —• C. Moreover, -K\ O-K2 = nog 
and the fibration /? = go/32 : .050(5) —+ E is a 6-equivalence. Hence, we can consider 
the situation 

Bsow l? = 6 - e q u i v
l g 

K K 
k = (Äľi, Лr2) 

which allows us to prove our main result. 

T h e o r e m 1. Let X be a connected CW-complex of dimension ^ 5 and suppose 

7 : [K, BSO(5)] - H2(X} Z 2 ) 0 H4(K, Z 2 ) 0 H4(K, Z) 

is defined by y(£) = ( w 2 ( 0 , ™4(0>Pi(0)- Then 

(i) i m 7 = {(a ,6 ,c) | g4c = tya + 2*6}, 

(ii) 7 is injective if and only if Conditions (A) and (B) are satisfied. 
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P r o o f , (i) follows immediately from the fact that a mapping f: X —> K can 

be lifted in the fibration a into BSO(b) if and only if f*(1 <g> 1 <g> Q4t4 — tyt2 <g> 1 (g> 

1 — 1 <g> i+t4 <g> 1) = 0. (See similar proofs in [1].) 

(ii) Since the space E is a homotopy fibre of the mapping k: K —> C, the Puppe 

sequence 

flk q ir k 

QK —> JT2C — F -> K -> C 

yields the exact sequence 

("*) . «. - . t . 
[X, ÍÍA] • [X, SIC] - > [ X , £•] —>[X, K] —> [X, C] . 

Moreover, /? being a 6-equivalence, /?* : [K, HSO(5)] —> [K, E] is a bijection for every 

CW-complex of dimension ^ 5. The following statements are equivalent: 

(1) 7 = a , = 7T„ o /?„ : [K, B 5 0 ( 5 ) ] -> [K, K] is injective. 

(2) TT* : [K, K] -> [K, K] is injective. 

(3) g* = 0 

(4) (Qk)m : [K, QK] -> [K, QC] is surjective. 

Hence we need to compute (fijfci)* : H3(K(Z4, 3), Z4) -> H3(fiK,Z4) and (fi*r2)* : 

H5(K(Z2,5),Z2)-,H
5(QK,Z2). 

First, let us consider ifci. 

QK ===== A'(Z2 ,1) x A'(Z2 ,3) x A(Z,3) •A ' (Z 4 ) 3) 

Pti 
PA' = PA' (Z 2 , 2 ) x PA' (Z 2 , 4 ) x PA'(Z,4) x »PA ' (Z 4 , 4 ) 

1 ' t ' 
K = = A ( Z 2 , 2 ) x A ( Z 2 , 4 ) x A'(Z,4) >A'(Z4 ,4) 

Every element in H*(A', Z4) is suspensive. If we denote all suspensions by cr, we get 

(ftki)*(*3) = (ftibi)*(<™4) = <r(k*i4) = a(l <g> 1 <g> £4£4) - a(<Pt2 ® 1 ® 1) 

- <T(\ <g> i**4 ® 1) = 1 ® 1 ® <r(D4*4) - a(^t2) ® 1 ® 1 - 1 ® (r(i+t4) ® 1 

the last equality being a consequence of the definition of suspension and coboundary 

operator. In the fibration K(Z,3) - • P K ( Z , 4 ) - • K(Z,4) we get 

c(Q4t4) = .p4(cri4) = Q4t3. 
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In the fibration / f ( Z 2 j 3 ) -+ PK(Z2,4) — K(Z2,4) we have 

<r(i+L4) = i*(<TL4) = i*L3 

and finally, in the fibration K(Z2,1) —> PIi (Z2 , 2) —> I\(Z2, 2) we obtain 

(5) <T(¥L2) = U 3 . 

Since this fact is not generally known, we will prove it at the end of this section. As 

a result of these computat ions we get 

(ftki)* : [X, QI<] -> [X, K(Z4, 3)]: (a, 6, c) - - o4c - i*a3 - t.,6. 

Hence (fik i)* is surjective if and only if 

(6) II3(K, Z4) = D4II
3(X, Z) + u II3(X, Z 2) . 

We show tha t (6) is equivalent to the condition (A). 

(A) => (6). Let x G II3(K,Z4), then Aj34x = 0. (A) implies tha t 2f34x = 0. 

Consequently, there is a y G H3(K,Z2) such that /34x = (32y = f34i+y. Tha t is why 

/?4(x — i+y) = 0, which implies x = i*y + £42 for some z G II3(A", Z). 

(6) ---> (A). Let v G H4(X, Z) satisfy 4u = 0. Then v = /?4z where .r = g4z + i*y G 

II3(X, Z4) so tha t v = /34g4z + /?4i*y = A**2/ = fcy- Hence 2v = 0 and t; is not an 

element of order 4. 

Now consider the mapping k2. The computation of (Clk2)* : H5(Ii (Z2 , 5), Z2) —• 

H5(ftK,Z2) gives 

(ftk2)*(*5) = (Clk2)*(<TL6) = (Tk*(L6) = 1 ® O"(5a2t4) eg) 1 + <r(*2 ® M ) ® 1 

= 1 (g) Sfl2£3 ® 1 + <T(*2 ® M) ® 1. 

We are going to prove that CT(A2 eg) *4) = 0. Consider the fibration 

ftH-> PB^B 

where £ = K ( Z 2 , 2 ) x K(Z2,4). Let p*: II6(£,Z2) — H6(PH,fiH;Z2) be deter­

mined by the mapping p. It is sufficient to show $*(L2 <g) t4) = 0. Using the Serre 

spectral sequence with coefficients Z2 for the above fibration, we have 

p* : H6(B, Z2) £ F2'° - Eg'0 <-- H6(PH, fiH; Z2) . 
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We compute d2: F4'1 - - E\'°. Since F4'1 .=* F4'0 ® F0'1, for the generators of F4'1 

we obtain 

d2(i\ ® *i) — ̂ 2(^2) * Li + 2̂ ' ^2(^1) = *2 * L2 = 4» 

^2(^4 ® *l) = d2(i^) * *1 + M ' aVl = A4 * *<2-

Hence 64 • £2 vanishes in F3' and p*(i2 <8> £4) = 0. 

So we conclude that 

(Ctk2),[X,QK] -> [ X , K ( Z 2 , 5 ) ] : ( a , 6 , c ) ^ 5 g 2 6 

and its surjectivity is given directly by Condition (B). 

It remains to prove the relation (5). Consider the Serre spectral sequence for the 

fibration K(Z2) 1) —• PK(Z2,2) —• A'(Z2,2) with coefficients Z4. For brevity we 

will again denote this fibration by QB —> PP —• B. It is not difficult to show tha t 

H4(B, Z4) = Z4 with the generator tyi2 and H3(QP,Z4) = Z2 with the generator 

i+i3. The coboundary operator in the long exact sequence for the couple (PB,QB) 

is an isomorphism, hence it is sufficient to prove that p*(tyi2) 7- 0, p* : H4(B, Z4) —• 

H4(PH, QH ;Z 4 ) being induced by p. Since 

E4'0-//4(S,Z4)/kerp', 

it is sufficient to show that E 4 , 0 ^ 0. We have 

Ef1 SS tf2(B, / / 1 ( f i f í ,Z 4 ) ) S Z 2 S E 2 ' 0 ® č " ' 1 , 

£ 4 ' 0 2 tf4(B, // 0(fii9, Z 4 )) Sř Z 4 . 

Moreover, cl2: K2' —• K2' is injective because 

d2(i+i2 ® i*ti) = d2(i+i2) • i*ti -f i*t2 • d2(uii) = 

= i*^2 • r(i+i\) = i*£2 

where r is a transgression. Hence E3 = Z2 . Further, K3' = 0, K3'~ — 0 and 

consequently, E4' = Z2 . D 
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4. SPAN AND THE EXISTENCE OF DISTRIBUTIONS 

In this section we compute the span of oriented 5-dimensional vector bundles 
over a 5-dimensional CW-complex satisfying Conditions (A) and (B) of Theorem 1. 
Under the same conditions we find all oriented 5-dimensional vector bundles which 
admit a 2-distribution, i.e. an oriented 2-dimensional subbundle, and all oriented 
5-dimensional vector bundles which admit a 4-distribution endowed with a complex 
structure, i.e. a complex 2-dimensional subbundle. For these purposes we need 

Theorem 2. Let X be a connected CW-complex of dimension ^ 5 and let W £ 
H2(X, Z2), P £ H4(X, Z). Then there exists an oriented 3-dimensional vector bundle 
£ over X with 

MO = w, Pl(0 = P 

if and only if 

QAp = yw. 

P r o o f is very similar to the proof of the first part of Theorem 1. See also [13]. 

• 

Corollary 1. Let X be a connected CW-complex of dimension ^ 5 satisfying 
Conditions (A) and (B). Then an oriented 5-dimensional vector bundle £ has a 2-
distribution with Euler class U if and only if 

(7) Q2U2 + w2(OQ2U + w4(O = 0. 

P r o o f . (=>) Let ( = ( 0 r where r is an oriented 2-dimensional vector bundle 
over X with the Euler class U and £ is an oriented 3-dimensional vector bundle over 
X. Then 

">2(0 = W2vC) + U>2(T) = W2(Q + Q2Uy 

w4(0 = W2(Q • W2(T) = U>2«) ' Q2U. 

Substituting from here into the expression Q2U
2 + w2(£) • q2U + w+($), we get (7). 

(<=) Let U 6 //2(K, Z) satisfy (7). There is an oriented 2-dimensional vector 
bundle r over X with the Euler class U. Put 

W = wi(Z) + Q2U, P = Pi(t)~U2. 
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Then 

e4p -yw = Q4PI(0 - Q4U
2 - ¥(w2(t) + Q2U) = 

= 64Pi(t) ~ QAU2 - yw2(Z) - VQ2U - i.(w2(S)Q2U) = 

= i.(Q2U
2 + w2(OQ2U + w4(0) = 0. 

According to Theorem 2, there is an oriented 3-dimensional vector bundle C over X 
with w2(Q = W and pi(C) = P> We compute the characteristic classes of the vector 
bundle ( 0 T . 

M C 0 r) = u>2(C) + tv2(r) = W + Q2U = uv2(0, 

w4(C 0 r) = tD2(C) • iv2(r) = W • Q2U = W2(£)Q2U + Q2U
2 = 

= W4(0> 

Pi(C 0 r ) = Pl(C) + Pi(r) = P + U2 = P l ( 0 -

(See [13] for the additivity of p\ in this case.) Theorem 1 now implies that £ = C® r , 

which completes the proof. • 

Remark . As far as it is known to the authors there are only two general results 
concerning 2-distributions in 5 or 4k + 1-dimensional vector bundles. See [11], The­
orems 1.3 and 4.1. The former deals with spin manifolds (i.e. w\(X) — w2(X) = 0) 
and tangent bundles while the latter requires span ^ 2. Both examine the existence 
of 2-distributions with the Euler class W G # 2 (X ,Z) . 

Corol lary 2. Let X be a connected CW-complex of dimension ^ 5 and let £ be 
an oriented 5-dimensional vector bundle over X. Then 

(1) span£ ^ 1 if and only if e (0 = 0. 

If Conditions (A) and (B) are satisfied then 

(2) span£ ^ 2 if and only ifw4(£) = 0. 
(3) spanf ^ 3 if and only if w4(£) = 0 and there is a U 6 # 2 (K ,Z ) such that 

™2(0 = &u, PI(0 = u\ 
(4) spanf = 5 if and only if U J 2 ( 0 = 0, " 4 ( 0 = 0> P i (0 = 0-

P r o o f . (1) is well known and is included only for completeness. 
(2) is the immediate consequence of Corollary 1 for U = 0. 
(3)(=>) Let £ = C ® 3e where C is an oriented 2-dimensional vector bundle over 

X. Then tv4(0 = "4(C) = 0 and for U = e« ) we get w2(Z) = w2(Q = Q2U, 

P i ( 0 = Pi(C) = ^/2. 
(«£=) For U € # 2 (K ,Z ) there is an oriented 2-dimensional vector bundle C over X 

such that e(C) = U. Then uv2(C03e) = iv2(C) = Q2U = iv2(0, w4((®Ze) = uv4(C) = 
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0 = w4(£) and pi(C 0 3e) = pi(C) = U2 = p i (0- Theorem 1 implies that C 0 3e = £ 
since the characteristic classes of both vector bundles are the same. 

(4) follows immediately from Theorem 1. • 

Remark. Statements (3) and (4) of Corollary 2 under a little bit different con­
ditions were already known to E. Thomas [12]. Statement (2) under Conditions (A) 
and (B) is new. It deals with the cases which are not covered in [12]. The condition 
w4(£) = 0 coincides with the condition for the stable span of 4k -f 1-dimensional vec­
tor bundles over a CW-complex of the same dimension to be ^ 2. See [6], Theorem 
2.1.1. 

Now we will investigate the existence of distributions with complex structure. The 
case of 2-distributions is treated in Corollary 1. Here we will deal with 4-distributions. 
For this purpose we need the following 

Theorem 3. Let X be a connected CW-complex of dimension ^ 5 and let C\ G 
H2(X, Z), C2 G H4(K, Z). Then there exists a 2-dimensional complex vector bundle 
C over X with the Chern classes 

ci(C) = Ci, c2(C) = C2. 

P r o o f of this theorem follows the same lines as in [13]. D 

Corollary 3. Let X be a connected CW-complex of dimension ^ 5 satisfying the 
conditions (A) and (B). Then an oriented b-dimensional vector bundle f over X has 
a 4-distribution with a complex structure if and only if 

(i) e(0 = 0, 
(ii) 02U/2(O = 0. 

P r o o f . (=>) Let rj be a 4-distribution in £ with complex structure. Then 
obviously e(£) = 0 and /?2tv2(f) = p2w2(r)<$e) = f32w2(rj) = P2Q2c\(rj) = 0. 

(<=) We have ft2w2(£) = 0 and /32w4(£) = e(£) = 0. Consequently, we can find 
ai G H2(X,Z) and a2 G H4(K,Z) such that D2ax = tv2(f) and Q2a2 = iv4(£). Then 

Q4(a\ - 2a2) = <#Q2ax + UQ2a2 = <#w2(() + i+w4(£) = Q4pi(£)-

Hence there is a 6 G H4(K, Z) such that a\ — 2a2 — 46 = Pi(£). Put C\ = a\ and 
C2 = a2 + 26. According to Theorem 3 there exists a complex vector bundle n over 
X of complex dimension 2 with 

c\(rj) = C\ and c2(rj) = C2. 
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Let us now consider the 5-dimensional real vector bundle r\ ® e. We get 

w2(i) 0 e) = w2(i]) = Q2ci(ij) = Q2C\ = w2(i), 

W4(l)<$e) = W4(T)) = Q2C2(T)) = Q2C2 = W4(Z), 

Pi(n®e) = Pi fa) = d(v)2 - 2c2(r/) = C\ - 2C2 = P l(0-

Theorem 1 implies that f = rj 0 e. This completes the proof. • 

Remark. Let us recall that an /-structure on a vector bundle £ is an endo-
morphism / : £ —> £ satisfying the polynomial equation / 3 + / = 0 with dimker / 
constant. It can be easily seen that if / is an /-structure then ( -- ( ® r | where 
C = ker / and T) = ker(/2 -f id). This means that on a vector bundle £ there ex­
ists an /-structure if and only if there exists a distribution 77 C f endowed with a 
complex structure. If £ is an oriented 5-dimensional vector bundle over a connected 
CW-complex X of dimension 5, we can distinguish two cases. In the first case of 
dim i) = 2 the existence problem for an /-structure is covered by Corollary 1. The 
second case of dim r) = 4 is treated in Corollary 3. 
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