Previous |  Up |  Next

Article

References:
[1] K. Dudičová: Models of Set Theory without the AC. Diploma paper, University of P.J. Šafárik, Košice, 1984. (Slovak)
[2] J.D. Halpern, P. E. Howard: Cardinals $m$ such that $2m=m$. Proc. Amer. Math. Soc. 26 (1970), 487–490. MR 0268034
[3] J.D. Halpern, P.E. Howard: Cardinal Addition and the Axiom of Choice. Bull. Amer. Math. Soc. 80 (1974), 584–586. DOI 10.1090/S0002-9904-1974-13510-X | MR 0329890
[4] T. Jech: The Axiom of Choice. North Holland, Amsterdam, 1973. MR 0396271 | Zbl 0259.02052
[5] T. Jech: Eine Bemerkung zum Auswahlaxiom. Čas. Pěst. Mat. 93 (1968), 30–31. MR 0233706 | Zbl 0167.27402
[6] T. Jech: Set Theory. Academic Press, New York, 1978. MR 0506523 | Zbl 0419.03028
[7] A. Levy: The independence of various definitions of finiteness. Fund. Math. 46 (1958), 1–13. DOI 10.4064/fm-46-1-1-13 | MR 0098671 | Zbl 0089.00702
[8] A. Levy: Basic Set Theory. Springer-Verlag, Heidelberg, 1979. MR 0533962 | Zbl 0404.04001
[9] J. Piatnica: Various Definitions of Finiteness. Diploma paper, University of P.J. Šafárik, Košice, 1981. (Slovak)
[10] G. Sageev: An independence result concerning the Axiom of Choice. Ann. Math. Logic 8 (1975), 1–184. DOI 10.1016/0003-4843(75)90002-9 | MR 0366668 | Zbl 0306.02060
[11] L. Spišiak, P. Vojtáš: Dependences between definitions of finiteness. Czech. Math. J. 38 (1988), 389–397.
Partner of
EuDML logo