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DEPENDENCES BETWEEN DEFINITIONS OF FINITENESS II 

LADISLAV SPISIAK, KoSice 

(Received November 7, 1988) 

1. INTRODUCTION 

This paper is a continuation of [11] and presents results contained in the author's 
works within the Student Research Competition and in his diploma paper; they were 
all prepared and written under the quidance of P. Vojtas. The notation used here 
is similar to that in [11]. Again we work in the set theory without any form of 
the Axiom of Choice (AC) and every consideration of the set theory in the paper 
works both in the ZF and ZFU theories. We consider eight definitions of finiteness 
systematically studied already in [7], [9] and [11] (later we add some new ones). 
Before introducing the definition let us recall that a set X is called reflexive iff there 
exists a bijection of X onto its proper subset. 

Definition. A set A is 

- I-finite iff every nonempty system of its subsets has a C-maximal element; 

- Ia-finite iff for its every subset B either B is I-finite or A — B is I-finite; 

- IFfinite iff every nonempty system of its subsets linearly ordered by C has a 
C-maximal element; 

- I1 I-finite iff its power set is not reflexive; 
- IV-finite iff it is not reflexive; 
- V-finite iff 2 • |.4| > \A\ or | A | = 0; 
- V I-finite iff \A\2 > \A\ or \A\ ^ 1; 
- VII-finite iff it cannot be well-ordered or the type of its well-ordering is a 

natural number. 
IV-finiteness is often called Dedekind finiteness (and I-finiteness is sometimes 

called Tarski finiteness). Without any further comments we (tacitly) use the well-
known statements provable in the set theory (without any choice axiom): 

- a set X is reflexive iff No ^ |K | (see e.g. [8]); 
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- a set X is I-finite iff (3n G u){n = | K | ) (e.g. [8]). 

It is an immediate observation that the equivalence of I- and VII-finiteness is 

equivalent to the AC. 

Let us briefly introduce some notation and recall something from [11]: 

For F-finiteness, F"-finiteness of A means F-finiteness of &{A)\ for Fi- and F2-

finiteness, Fi —> F2 denotes the formula 

{VA){A is Fi-finite => A is F2-finite), 

Fi <-> F2, Fi -*> F2, Fi ~> F2 denote the formulas (Fi -> F2)k{F2 -> Fi), -.(Fi -> 

F2), ~^{F\ <-> F2), respectively; ^ J P is the class {A ; A is F-finite}. Further, xp\ = 

(I <-» Ia), V2 = (Ia ~ II), V>3 = (II «- III), V>4 = (III <- IV), ^5 = ( IV «- V), 

V>6 = (V <- VI), ^7 = (VI ~ VII); V>- = - . ^ , V? =-= </>.• Hence for 6 € {0 ,1} , 

ipf says whether there is any set in the assigned difference of classes of finite sets or 
7 6 not; if for e = {6\)62,63,64,6$,66y67) £ {0, 1} we define $£ = fc V',', w e obtain the 

•=1 
formula saying in which difference of classes of finiteness there is or is not a set. If 

in a model *M of the set theory <S>£ holds, we say also that ^l has type e. The list 

of "impor tant" e's from [11]: 

ex = ( 0 , 0 , 0 , 0 , 0 , 0 , 0 ) , 

e2 = ( 0 , 0 , 0 , 0 , 0 , 1 , 1 ) , 

e 3 = ( 0 , 0 , 0 , 0 , 1 , 1 , 1 ) , 

£4 = ( 0 , 0 , 0 , 1 , 1 , 1 , 1 ) , 

e5 = ( 0 , 0 , 1 , 1 , 1 , 1 , 1 ) , 

£6 = (0 ,1 , 0 , 1 , 1,1,1), 

C7 = ( 0 , l , 1,1, 1,1,1), 

e8 = ( l , 1 ,0 ,1 ,1 ,1 ,1) , 

£T9 = ( 1 , 1 , 1 , 1 , 1 , 1 , 1 ) . 

Now let us mention some results connected with the definitions of finiteness. The 

s ta tement I -> Ia -> II —> III -> IV -> V -> VI -> VII as well as the fact that all 

these definition are independent in the ZF and ZFU theories are well known (precise 

reference see in [11]). The main results of [11] which are needed in the following are 

Theorems 1.1 and 1.2 of [11]. They state that the AC, V <-> VI, VI <-> VII are 
9 

equivalent in the set theory and that \ / <££t holds in the set theory, i.e. there are at 
*=i 

most 9 possibilities of the simultaneous existence of various finite sets (there are at 

most 9 types of models of the set theory with respect to the definitions of frhiteness). 
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Some further relations between the considered definitions are given in this paper, 

namely operations constructing from a /-infinite, F-finite set an example of a G-

infinite but G'-finite set for certain F, G and G'. They are presented in 

T h e o r e m 2 A . 

i) If A e Jia ~ Ji then 2 x A e Ju - Jia. 
ii) If A e Jin - Ji then &(A) G Jiv - JUL 

iii) If A e Jiv - Ji then AULJ e Jv - Jiv. 
iv) If A e Jm - Ji then A x UJ e Jvi - Jv. 
v) If A e Jvn - Ji then A x LJ e Jvu - Jv. 

vi) If A e Jvn ~ Jv then ({0} x A) U A+ G Jvi - Jv. 
vii) If A e Jvu - Ji then (A x w) U (A x w)+ G Jvi - Jv. 

viii) IfAe Jvu - Ji then "A G Jvu - Jvi-
(X+ is the so-called Hartogs' aleph of the set X). 

Note tha t these operations form another proof of Theorem 1.1 and 1.2 of [11] 

(they exclude all £'s except of S\ ...,69). They also enable us to say something 

concerning one natural question investigated e.g. by T. Jech ([4], [5]) and A. Tarski 

(the references see in [7])—the behaviour of sets of real numbers with respect to the 

definitions of finiteness. If we denote by (Fi <-* F2)1 the formula 

(VT4 C R)(A is Frfinite *> A is F2-finite) 

and form V>t', ^ ' , *&'e just as V;n *Pf a n ^ $£ above, we obtain 

7 
Corol lary 2 B . \ / O ^ is provable in the set theory, where 

m = ( 0 , 0 , 0 , 0 , 0 , 0 , 0 ) , 

7/2 = ( 0 , 0 , 0 , 0 , 0 , 0 , 1 ) , 

r/3 = ( 0 , 0 , 0 , 0 , 0 , 1 , 1 ) , 

7/4 = ( 0 , 0 , 0 , 0 , 1 , 0 , 1 ) , 

1/5 = (0 ,0 ,0 ,0 , i , U ) , 

7/6 = ( 0 , 0 , 0 , l , 1 , 0 , 1 ) , 

7/7 = (0 ,0 ,0 , 1,1, 1,1). 

We deal also with closedness of classes of finite sets under certain operations, 

summar izing several properties in 
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Theorem 2 C . i) Jiv and Jviu are closed under subsets iff AC holds, Jv is 

closed under subsets iff IV <-* V. 

ii) J la is an ideal iff I <-+ la. 

"0 Jt> cflly Jut' <fiv a r e ideals. 

The next results show certain strange properties of finiteness weaker than the 
Dedekind one: assigned classes of finite sets contain "arbitrarily large" finite sets 
according to 

Theorem 2 D. i) If A G /v — <fi then A U a G fv - <fiv holds for every 
ordinal a ^ No. 

ii) If A G </v// — , / / tiie/i for every set X there exists Y G Jvu — Jvi such 

that XU AC Y. 
iii) If A G <fvii - Ji then for every set X there exists Z G Jvi — ,/V such that 

XUACZ. 

A partial answer to the problem of relative consistency of the remaining nine 
possible <$£'s with the ZFU and ZF theories is given by 

Theorem 3 A. Each of the formulas <J>£9, $£5, $£3, $£0, *£i is relatively consis­
tent with the ZFU theory. 

Theorem 3 B. £ac/i of the formulas $£9, 4>£4, $£3, $£2, 4>£i is relatively consis­

tent with the ZF theory. 

Finally we deal with some new definitions of finiteness. We start with the following 
ones: 

Definition. A set A is 

- A-finite iff every Boolean algebra 99 of its subsets (i.e. every B.a. [ ^ , U , ( 1 , - , 

V>,A] with St C 2?(A)) is atomic; 

- C-finite iff every Boolean algebra 39 of its subsets is complete; 

- P-finite iff every filter on A can be extended to a principal filter; 

- //-finite iff every Hausdorff topology on A is discrete. 

Comparison of them with the old definitions is contained in 

Theorem 4 A. i) / «-> C «-+ P «-> H. 

ii) / — A" — A — IV (and A" — / / / ; . 

A more interesting way to obtain a new definition (VI11) has been suggested by 
Professor L. Bukovsky: to convert the definition of the Dedekind finiteness. 
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Definition. A set A is Vlll-finite iff every / : A —> A which is onto A is also 
one-to-one. 

We have also some independence results concerning VHI-finiteness (one different 

from that in Theorem 4B ii) is in the first lemma of Section 4). 

Theo rem 4 B. i) III — VIII 

ii) *e9k(IV «* V1U *•• III * 
the ZFU and ZF theories. 

* IV (and I -> VIII" — III;. 

VIII" *++ I) is relatively consistent both with 

Summarizing the information from [11] (Theorem 2.1) and from this paper (Section 
3—the properties of models *//t\, M*, M*', ^Vx* and Section 4—the definition 
VIII in these models) we obtain the diagram presented below; —• denote formulas 

provable in the set theory, —/—• and — / • denote nonprovable formulas true 
in ^t\ and ^ + , respectively; moreover, all these formulas hold both in *4t* and 
^V[+ models (hence ^/(f and ^Y* show the simultaneous relative consistency of 
all nonprovable formulas occurring in the diagram). Provability of every missing 
implication in the diagram (up to the "composition" of implications and except of 
VII" -** V11 known in every model with @*(u) =- R not well-orderable) is an open 
problem. 

The rest of the paper is organized as follows: Section i is devoted to the proof of 
Theorems iX and to the presentation of some more detailed information, remarks, 
comments and problems concerning the given topic 

2 . OPERATIONS CONSTRUCTING SETS WITH VARIOUS RELATIONS TO DEFINITIONS 

OF FIN1TENESS. PROPERTIES OF JF'S 

P r o o f of Theorem 2 A. i) Folklore. 

ii) &(A) G Jiv holds by the definition and &(A) £ J1U holds by the well-
known fact that \9>{3>{A))\ > N0 holds for every I-infinite set A ([8]). 
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iii) Clearly without loss of generality one can assume A C\UJ = 0. IV-infiniteness 

is evident. Let A U u> be V-infinite. Then 

| A U u / | = 2 • \AUu>\ = |(2 x A)Uu;|, 

and let 

/ : (2 x A)Uu ->AUu> 

be one-to-one. There are only I-finitely many elements of f[uj] which may belong 

to A, I-finitely many (n) elements o f / [ { 0 } x A] and I-finitely many (m) elements 

of / [ { l } x A] which may belong to UJ. Therefore one can construct a one-to-one 

mapping 

g: 2 x A -> AU(n-\- m); 

hence 2 x A is 1V-infinite. This implies IV-infiniteness of A (take any one-to-one 

sequence of size No in 2 x A). 

iv) V-infiniteness is obvious. Let A x UJ be VFinfinite, i.e. there exists an injection 

g:AxujxAxu)-+Axu) 

and therefore also an injective 

/ : A x A —* A x UJ. 

If (3a G A)(Vn0 G UJ)(3JI > ?i0)(3[6,c] e A x A)(f([b}c]) = [ayn]) then one has a 

one-to-one sequence of size No in A x A; either from the first or from the second 

components of the pairs one can form a one-to-one sequence of size No in A, which 

gives a contradiction. Therefore [(Va G A)(3na G ^)((V[6,c] G A x A)(f([b,c]) = 

[a, n] => n < na) & ([a, n a — 1] G r n g / V 7ia = 0))]. Now if there exists n0 G UJ such 

tha t 

(Va G -4)(na ^ 7i0) 

then \A x A\ ^ no • |-4| and thus A x A is IV-infinite, which leads to a contradiction 

like above. Therefore n a ' s are not bounded in UJ. For a G A put 

Aa = {b G .4: n a = nb) 

and define a mapping 

h: {naeu>;aeA}^0>(A) 

by h(na) = ^4a. Clearly the size of dom/i is No and h is one-to-one, which means 

that £?(A) is IV-infinite—a contradiction . 
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viii) VI-infiniteness is obvious. A can be mapped one-to-one into "A and therefore 
WA is not well-orderable, hence it is VII-finite. 

v) The same as in viii). 

vi) Clearly ({0} x A) U v4+ is V-infinite. Let it be VI-infinite, i.e. 

\A\2 + 2-\A\-A+ + A+ = \A\ + A+, 

\A\-A+ ^\A\ + A+. 

By Tarski 's lemma mentioned also in [11] (see [8]) | A | and A+ are comparable, 

hence | A | <C A+, therefore A is well-orderable, which is a contradiction. 

vii) It follows immediately from v) and vi). • 

Part iv) of the theorem may seem to be not useful because of the stronger result 

of part vii) but the set in iv) is simpler (smaller) and so there is some interesting 

information in iv), too. Several of these operations (namely 2 x A, g?(A), A Uw, 

A XUJ, "A) have been used in the proofs of some independence results, but in specific 

models of the ZFU theory; the argument of the operations was the set of all a toms 

(see [7]). Parts i) and iii) have been already proved in [7] and [2] in the form 

(II «-> la) => (la <-> I) and ( IV «-> V) => ( IV <-+ I), respectively. The proofs in [7] 

and [2] proceed by way of contradiction and the sets which make those contradictions 

are 2 x A and A Uu>, respectively (A is a I-infinite set which is la- and IV-finite, 

respectively). The proofs of ii) and viii) are from [7], too, because they work not 

only in the models used there (on the other hand, the proofs of the properties of 

A Uu and A x w in [7] essentially use the properties of the model ). Part vi) is the 

one in which the original Tarski 's idea used in the proof of his nontrivial s ta tement 

AC <-> (I <-• VI) is hidden. 

P r o b l e m s . 2.1) To find an operation (p such that <p(A) £ Jm — J^n holds for 

every A £ Jn — ^ i or to prove that it does not exist. 

2.2) Does not A x u) £ <fvi — <fv hold already for A £ ^ / v — ̂ / or even for 

A t j v - Sil 

Considering the set of all real numbers R, one observes at once that if R is well-

ordered then each of its subsets is such and thus I <—• VII holds for sets of real 

numbers. Therefore the single interesting case is R not well-orderable. Recall tha t 

the definitions I and III are equivalent for subsets of R ([4] and a footnote in [7]) 

and if R is not well-orderable then R itself is V11-finite, VI-infinite. Note that if 

A C R then also AUu, AXLJ and "A can be embedded into R (A C R, hence "A C "R; 

clearly |^R| = |R| without AC). 

397 



P r o o f of Corollary 2 B. It follows from the above remarks that under the as­

sumption R not well-orderable, V $'?/ holds for sets of real numbers, where 0 is the 
r?€0 

set of all vectors of the form (0,0, 0, £4, D5, QG, 1) with £, E {0, 1). The possibilities 

7)= ( 0 , 0 ,0 , 1,0,0,1) and 7/= (0 ,0 ,0 , 1,0,1,1) are excluded by the operation AUw. 

• 
P r o b l e m . 2.3) To eliminate as many possibilities as possible and prove the con­

sistency of the rest. 

Further let us consider the classes fp and investigate several of their properties. 

There are some natural demands which the concept "finiteness" should satisfy, like 

"the power set of a finite set is finite", "a subset of a finite set is finite", "the union 

of two finite sets is finite" etc. It follows easily from the fact that the definitions 

/ , . . . , VII are independent and from Theorem 2.1 of [11] that only fj and fvu 

are closed under the power set operation, the others need not be such. The last two 

requirements mentioned above form together with "0 is finite" and "not every set is 

finite" jus t the definition of an ideal. So we will answer the question which from the 

classes fp must be ideals and which ones need not. The first step is to solve the 

question about subsets. 

L e m m a . For every set A the following holds: 

i) A is F-finite iff every proper subset of A is F-finite for F 6 {/, / a , / / , / / / , IV}. 

ii) A is IV-finite iff every proper subset of A is V-Unite iff every proper subset of 

A is VI-finite iff every proper subset of A is VH-finite. 

P r o o f , i) Not difficult, verified in [9]. ii) Since we have IV -> V -> VI — VII 

and i) it suffices to show that if A is /V-infinite then there exists a well-ordered 

infinite proper subset of A; and this clearly holds. D 

Consequently, it is interesting to deal with the requirement concerning the union 

of two finite sets only for the classes fj, fia, fli, fill, fiv- The result is in 

our Theorem 2C. 

P r o o f of Theorem 2 C . i) Immediate consequence of Theorem 1.1 of [11] and 

the lemma ii). 

ii) It follows easily from lemma i) and Theorem 2 A i). 

iii) We only show that if A O B = 0 and A U B g JJJJ then A £ f i n or 

B $. fill, everything else (about fj, f n , fiv) being easy. Take a one-to-one 

sequence f̂  = {Dn G 9*(A U B); n G w ) and construct sequences s/ = {A D Dn ; 

neu}, &= {BC\Dn]n€ LJ}. If 

( З n 0 Є w)(Vn > n0)ßn' ^ n0)(An, = An) 
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then 

Therefore 

and clearly 

(ЗҺ .$ n0)(Vm0 Є u>)(3m > m0)(Am = At). 

|{mЄu>; Am = Ak}\ = N0 

(m ^nkAm = An) => Bm ^ _9n, 

thus B is I//-infinite. If ri0 from the above consideration does not exist then one 
can easily construct a one-to-one sequence of size No in @>(A), which proves ///-
infiniteness of A. D 

P r o o f of Theorem 2D . i) A U a £ fw is obvious. A U a G ^/V: 

Case a < A+. There exists # C A such that | # | = |a|. Then obviously |j4Ua| = 

\A\ and hence .4 U a E fv. 
Case a ^ A+. One can use similar argument as in the proof of Theorem 2 A iii). 

Put B — A—a. MB is /V-fiuite then the proof is just the same as that of Theorem 2 A 

iii). Suppose now \B\ ^ ao. We prove by contradiction that 2 • |J9 U a| > | /?Ua | 
holds. Assume the contrary, i.e. there exists a one-to-one mapping 

/ : 2 x ( B U a ) - > BUa. 

Take the cardinal number 
A= | / [2x B]C)a\. 

Clearly A < H+ ^ A+. Hence one is able to construct an infective 

g:2x B-+ BU\ 

where A ^ \B\ (and |fl| ^ N0; this is important for the case A < N0)- Since \BU A| = 

| B| there exists a one-to-one mapping 

h:2xB-+B 

and hence 2 | H | $ |H|. But there exists a cardinal number K such that \A\ = \B\ + K 
and therefore 

2\A\ = 2(\B\ + K)^\B\ + K=\A\, 

which contradicts K-finiteness of A. 

ii) and iii) Clearly if A £ Jvil — <fl then A' U A is such, too. By Theorem 2 A 

viii), if A € fvu — fi then 

Y' =" (X UA)Z fvu - Jvi and \X UA\^ \Y'\ 
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holds for every X. By Theorem 2 A vii), if A G </vu — Ji then 

Z' = {(X U A) x u;) U ({X U A) x o>)+ G ^ i / / - , / v and | K U A\ ^ \Z'\ 

holds for every X. Now it is easy to construct from Y\ Z* sets Y, Z of the same 

size and with l U j 4 C V , Z . • 

A result similar to Theorem 2 D i) is formulated in Corollary to Lemma 9 in 

[7], namely tha t the s tatement "for any given aleph there exists a V-finite set with 

cardinality greater than that aleph" is relatively consistent with ZFU-f- "every set 

can be linearly ordered". The proof of V-finiteness of the set A U a in the model 

used there (Lemma 9) works with the specific properties of that model (hence the 

proof in [7] is entirely different from ours and is not sufficient for our more general 

result). 

P r o b l e m s . 2.4) Can any (sufficiently large) set X (not only every ordinal a J> 

N0) be also extended to W G Jv — Jiv^ 

2.5) Cannot an upper estimation for Dedekind finite sets be found—e.g. rank a 

such tha t for every IV-finite set there exists a set of the same size with rank /3 <J a 

(for F-finite, Dedekind infinite sets it is impossible, as we can see from Theorem 

2 D ) ? 

3. C O N S I S T E N C Y OF SOME <&£'S 

(i.e. of some types of simultaneous occurrence of differently finite sets) 

To prove Theorems 3 A and 3 B we recall some properties of several models of the 

ZFU and ZF theories and give their types or at least particular information about 

it. 

First let us consider the ZFU theory. We will use the so-called permutat ion models 

of ZFU. They are all defined in ZFC, hence in the description of models we will not 

distinguish between various kinds of finiteness. Such a model is uniquely determined 

by a set of all a toms A, a group of permutations ^ on it and a normal filter of 

subgroups of tha t group. In every model used here the filter is constructed in the 

well-known way from a nontrivial ideal J on £?(A). (Elements of J are the so-

called supports of sets of the model.) The first model mentioned below is due to A. 

Fraenkel, the second is due to A. Mostowski; both of them together with our fourth 

model are described for instance in [4]; each of their properties which are needed 

here was known except of 2 • | A | > | A | in M±. 
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P r o o f of Theorem 3 A. Model ^CC\. 

A is countable infinite, <3 is the group of all permutations on A, J is the ideal of 

all finite subsets of A. Here A is I-infinite and B C A is an element of M\ iff it is 

either finite or a complement of a finite set. Hence A is Ia-finite, thus JCC\ is of type 

£g or e9. 

Model JC+. 

A is a countable linearly ordered set with dense ordering without the minimal and 

maximal elements, *£ is the group of all order-preserving permutations on A, J is as 

for the model ^CC\. ^CC+ is linearly ordered by a class-relation = ;̂ its restriction to 

every B G - # + gives a linear ordering of B. Since for linearly ordered sets I •-> II 

holds (e.g. [7]) we have that A is II-infinite. It is also known that A is III-finite, 

i.e. ^CC+ has type £5. 

JC+. 

It is a combination of ^C\ and ^ + . Let A\f\A' = 0, let A\ be countable infinite, 

A' a countable linearly ordered set with dense ordering without the minimal and 

maximal elements, A = A\ U A'. Let *S = {w; n is a permutation on A, n[A\] = A\, 

7T preserves the ordering of A'}. J is again the same as for the models M\, ^CC+. 

Hence A is the union of disjoint sets A\, A' of atoms with the same properties as 

the sets of a toms have in M\ and ~ # + , respectively. Obviously, for A\ and A' the 

s ta tements about their finiteness proved above stay true. Thus JCC^ is of type £9. 

Model ^CC±. 

A has Ki elements, *& is the group of all permutations on A, J is the ideal of all 

subsets of A which are at most countable. Clearly a subset of A is an element of 

^ 4 iff it is either at most countable or a complement of an at most countable set 

of a toms, hence A is ZV-infinite. V-finiteness of A will be proved by contradiction. 

Let A be V-infinite, thus there exists an injective 

/ : A x2-+A 

with a support E G J. There exist x, y G A such that 

f([x10]) = akf([yil]) = bka,b<£E; 

clearly a ^ b. Take the permutat ion w which exchanges a, 6 and maps all the other 

a toms identically. 

It must be true that 

b*f[A* {0}] = *f[A x {0}] - f[*A x {0}]. 

401 



But [[x, 0], a] G / , hence also [[TTX, 0], na] e nf = f and thus 7ra = b G /()r-4 x {0}], 

which is a contradiction. The countable Axiom of Choice (CAC) holds in ^/C±. \i g 

is a function in the universe and 

dom </ = wh (Vn € u)(g(7i) £ -^4) 

then # G ~^4 ( lemma in [4], chap. 8). This implies CAC in ^ 4 since we assume AC 

in the universe. 

As is well-known, CAC => (I *-> IV) ([4]), hence MA, has type £3. 

Model ^ 3 . 

We denote by ^#3 the model of ZFU constructed in [3]. By [3] 

je3\=((I~V)k-iAC) 

holds; thus SC3 is of type €2. • 

P r o b l e m s . 3.1) What is the type of M{i 

3.2) Let us consider the so-called second Fraenkel's model of ZFU (we will denote 

it by ^#2) ' 

A is the union of No disjoint pairs Pn of atoms. # is the group of all permutations 

preserving the pairs, J is the same as for SC\. It is easily provable that every 

Pn G - # 2 . {[n, Pn]; n G u/} G ^2 and that A is /V-finite; clearly A is / / / - inf ini te . 

Hence ^2 -S of type (S\, 62, 63, 1,1,1,1). What are the values of 6\, 62, 63? 

3.3) To find models of the other types or to prove that they cannot occur. 

Next we turn our attention to ZF. Our last two models are made from models of 

ZFU by using Jech-Sochor 's theorem which says, roughly speaking, that if a is an 

ordinal in a given model M of ZFU then there exists a model J/ of ZF such tha t the 

initial segment of JC below the level a can be G-isomorphically embedded into JV. 

This means tha t if we have a formula <p, the truth value of which depends only on 

sets with ranks bounded by a common constant, then from a model of ZFU which 

satisfies <p we can construct a model of ZF which satisfies <p, too. Note tha t "A is 

F-finite" is such a formula for every F considered here (and hence " A is F-infinite", 

too). 

P r o o f of Theorem 3B. Model ^Y\. 

By </l\ we will denote the basic Cohen's model (see [4], chap. 5). The following 

hold in -y^: 

i) / ~ III] 

ii) there exists B G -yf'i, -5 C R which is /V-finite, /-infinite. 
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Moreover, u> is VII-infinite but VIF'-finite (because R contains a IV-infinite, 

I-finite set, thus R cannot be well-ordered). Hence the type of JV\ is £4. 

Model ^ . 

We will denote by JV3 the model from [10]. In J/3 I •-> V holds but AC fails. 

Hence JV$ is of type e2. 

Model JV+. 

In M* there are sets X G Jia — Ji and Y G ^/ / / / - , / / / . Taking a sufficiently 
large one can construct ^Y* by Jech-Sochor's theorem such that 3X' G Jia — 

J 1 h 3Y' G /in - J 11 holds in JV+. Then ^ + is of type e9. 

Model ^ . 

Using Jech-Sochor's theorem on ^ 4 and the formula A G ^ v — Jiv we obtain 
the model ^V4 in which 3K G ^/V — ^ / v holds. By [4], chap. 8, Lemma 8.5 and 
proofs of Theorems 8.6 and 8.8 C^4C holds in ^Y\. (Our model M4 is a special case 
of models mentioned there for a = 0 and cv = 1.) Since CAC => (I <-> IV) we know 
that the type of J/4 is £3. D 

Thus we see that both in ZFU and ZF there are at least 5 and at most 9 types of 

models (models with AC have type e\). 

Note that the models M3 and J/3 show that the statement "I-infinite cardinals 
are idemmultiple" is not equivalent to AC. Hence we know that Theorem 1.1 from 
[11] cannot be improved. 

P rob l ems (similar as for ZFU). 3.4) To find models of the remaining types or 
to prove that they cannot occur. 

3.5) Let us denote by jV2 the so-called second Cohen's model of ZF (see [4]): In 

J/2 there exists a set B with the same properties as A in M2, i.e. 

i) B = (J Pn, Pn's disjoint, |Pn | = 2, Pn are sets; 
n£ui 

ii) {[n, Pn]; n G u;} is a set; 

iii) B is IV-finite; 

hence we know 64 = 1 but we do not know the values of 6\, 62, S3. 

A common problem for all models: 

3.6) Which 4>;7; holds in a given model for sets of real numbers? 

Our last remark is the following. It could be possible to find a model giving 
the negative answer to the problem 2.1). As we can see, neither this section nor 
Theorems 3 A and 3B (nor the whole paper) solve this question; it remains open. 
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NEW DEFINITIONS OF FINITENESS 

An intuitive idea of finiteness has its reflection in the properties of various math­

ematical concepts. Its formalization leads to some (mathematically) natural defini­

tions of finiteness, like the definitions A, C, P, I/, VIII mentioned in Introduction. 

First we deal with our provable statements concerning them. 

P r o o f of Theorem 4 A. i) The fact that I-finiteness implies C-, P- and H-

finiteness is obvious. Converse implications: I-finite subsets of a I-infinite set and 

their complements form a Boolean algebra which is not complete. Complements of I-

finite subsets of a I-infinite set give a filter which cannot be extended to a principal 

filter. Taking a fixed x from a I-infinite set A we can introduce the topology on 

A — {x} discretely and define the completements of I-infinite subsets of A — {x} to 

be open neighborhoods of x; we obtain a nondiscrete Hausdorff topology on A. 

ii) I —•» A" is obvious. 

A" —> A: it can be easily proved that if X is A-finite then every V C l i s A-finite, 

too. This implies A" —• A. 

A —* IV: let A be IV-infinite, let / : w —• A be one-to-one. We will use classes of 

congruence modulo 2 m to construct a certain system of subsets of A. Put 

-4m,o = {/(2m • *) G A ; k G u} U (A - rng / ) 

and for n G u>, 0 < n < 2 m put 

Am)n = { / ( 2 m . k + n ) G - 4 ; f c G u , } , 

<*f - {Am>n G &(A); m, n G u;}. 

Now we will construct the smallest B.a. of subsets of A which contains if: put 

# o = ^ and for k G u> 

ak+x = {y u z G 3»(-4) )Y,ze&k}u{Y-ze &{A) ,Y}Z e&k}. 

Then ^ = (J ^ is a B.a. of subsets of A which even has no a tom. D 

kew 

P r o o f of Theorem 4B i). VIII -> IV is obvious. III -> VIII: 

Let A be VIII-infinite and let / : A —> A be onto A but not one-to-one. For B C A 

take # ( # ) = / - 1 [ H ] . £ is one-to-one but not onto &(A) (not every singleton from 

A can be a value of g). D 

Finally, let us deal with our independence results concerning VIII-finiteness. 

Clearly only models with III ^> IV are interesting in this si tuation . The prop­

erties of ^ 2 and .-A2 follow from 

404 



Lemma. Let B be a set with the following properties: 
i) B = (J Pn,Pn's disjoint sets, \Pn\ = 2; 

n6w 

ii) {[n, P„]; n £ LJ} is a set; 

iii) B is IV-finite. 

Then B is VIll-finite. 

P r o o f . Indirectly—let there exists a mapping f:B—+B which is onto B but 

not one-to-one. Put 

*; = {aePn;/(a)*/[lJft]}-
k<n 

Clearly Xn C P„ and r n g / = / [ (J K\- If 
nGu> 

(Vn0 G w)(3n > n0)(|A';| = 2& | / [ ^ ] | = 1) 

then / defines an infinite one-to-one sequence in H, which means IV-infiniteness of 
B. Thus let 

(3n0 € w)(Vn > n0)( |Kn | = 2 => | / [K n ] | = 2). 

If for n (^ J/0) 

|K n | = 2 f c | / [ K n ] | = l 

holds then take an arbitrary a G Xn and put Kn = {a} (we choose only I-finitely 
many times). For the other n's put Xn = Xn. Now / [ [J Xn is a bijection between 

B and |J Ar„ C I?, which implies IV-infiniteness of B. D 
n£u; 

Hence u ^ , ^ (= (III <~ VIII). 
While we do not need (and do not use) the preceding lemma for the proof of 

Theorem 4B ii), the following results are those which in fact prove this statement. 

The next lemma gives information about Definition VIII in jti\, ^ + and therefore 

in ^/{\ ', oAi+, too. 

Lemma, i) (\\\)J(\ (= 9>(A) G Jvm - <////• 
i i ) ^ + ^&(A)eJiv- Jvm. 

(A is the set of all atoms in the model.) 

P r o o f , i) It is proved in [1] that in M\ the following holds: every / : £?(A) —> 
2?(A) which is onto £?(A) is also one-to-one. This implies £P(A) £ Jvm — Jm-

ii) IV-finiteness of £?(A) is known; it suffices to show its VIII-infiniteness. But 
the following holds for M+ (see for instance [6], [7]): B C A is an element of ^ + 
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iff it is the union of finitely many intervals and isolated points of A. Thus for every 
B C A, B G ^ + . B with isolated points there exists its unique minimal isolated 
point PB- Put f(B) = B — {PB} for B with isolated points, f(B) = B for the other 
B C A. Clearly such / : &(A) —• &(A) is onto ^ ( A ) but not one-to-one, which 
means that 2?(A) is VIIF-infinite. D 

Corollary. 
i) The following statements hold in yfl^ : 

&(A')e Jiv- Jvm\ 

^(Ax)ejvin- Jm\ 

A' e Jin - Jvui" \ 

Ax e Jvin" - Ji-

ii) The following formulas hold in JV*: 

3X E Jiv - Jvm\ 

3Y G Jvm - Jui\ 

3Z e J in- Jvui"\ 

3VVG Jvui"- Ji> 

P r o o f , i) An immediate consequence of the definition of M* and Lemma. 

ii) By Corollary i) ^/t* is a model of ZFU satisfying the desired formulas. If we 
choose a in the construction of jV* large enough also with respect to them (this 
is possible—in fact a very small or even no change is necessary), we guarantee that 
JV* satisfies all of them, too. D 

P r o o f of Theorem 4B ii) is now finished: 

By the Corollary, */%* and JV[^ are models of 

<Pe9k(IV *-> VIII *-> III ^ VIII" ~* I). 

D 

Problem. 4.1) To give complete information about the definitions A, VIII (in­

cluding whether J A , Jvm are ideals). 
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