Previous |  Up |  Next

Article

References:
[1] H. Bauer: Der Perronsche Integralbegriff und seine Beziehung zum Lebesgueschen. Monatsh. Math. 26 (1915), 153–198. DOI 10.1007/BF01999447 | MR 1548647
[2] H. Federer: Geometric Measure Theory. Springer, Berlin-Heidelberg-New-York, 1969. MR 0257325 | Zbl 0176.00801
[3] J.Jarník, J. Kurzweil, Š. Schwabik: On Mawhin’s approach to multiple non-absolutely convergent integrals. Časopis pro Pěst. Mat. 108 (4) (1983), 356–380. MR 0727536
[4] J. Jarník and J. Kurzweil: A non-absolutely convergent integral which admits $C^1$-transformations. Casopis pro Pest. Mat. 109 (1984), 157–167. MR 0744873
[5] J. Jarník and J. Kurzweil: A non-absolutely convergent integral which admits transformation and can be used for integration on manifolds. Czech. Math. J. 35 (110) (1985), 116–139. MR 0779340
[6] J. Jarník and J. Kurzweil: A new and more powerful concept of the PU-integral. Czech. Math. J. 38 (113) (1988), 8–48. MR 0925939
[7] W.B. Jurkat and R.W. Knizia: A characterization of multi-dimensional Perron integrals and the Fundamental Theorem. (to appear). MR 1118008
[8] W.B. Jurkat and R.W. Knizia: Generalized absolutely continuous interval functions and multi-dimensional Perron integration. (to appear). MR 1182631
[9] W.B. Jurkat and D.J.F. Nonnenmacher: The general form of Green’s Theorem. (to appear). MR 1000158
[10] K. Karták and J. Mařík: A non-absolutely convergent integral in $E_m$ and the theorem of Gauss. Czech. Math. J. 15 (90) (1965), 253–259. MR 0177092
[11] J. Mařík: The surface integral. Czech. Math. J. 6 (81) (1956), 522–558. MR 0089891
[12] J. Mawhin: Generalized Riemann integral and the divergence theorem for differentiable vector fields. Proceedings of the International Christoffel Symposium, Birkhaeuser, Basel, 1981, pp. 704–714. MR 0661109
[13] J. Mawhin: Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields. Czech. Math. J. 31 (106) (1981), 614–632. MR 0631606 | Zbl 0562.26004
[14] D.J.F. Nonnenmacher: Perron Integration auf allgemeinen Bereichen und der Satz von Gree. Diplomarbeit Univ. Ulm, 1988, pp. 1–117.
[15] W.F. Pfeffer: The divergence theorem. Trans. AMS 295 (1986), 665–685. DOI 10.1090/S0002-9947-1986-0833702-0 | MR 0833702 | Zbl 0596.26007
[16] W.F. Pfeffer: The multidimensional fundamental theorem of calculus. J. Austral. Math. Soc. 43 (1987), 143–170. DOI 10.1017/S1446788700029293 | MR 0896622 | Zbl 0638.26011
[17] W.F. Pfeffer and W.-C. Yang: A multidimensional variational integral and its extensions. preprint (1988). MR 1042534
[18] S. Saks: Theory of the Integral ($2^{\text{nd}}$ revised edition). Dover Publications, New-York, 1964. MR 0167578
[19] V.L. Shapiro: On Green’s theorem. J. London Math. Soc. 32 (1957), 261–269. DOI 10.1112/jlms/s1-32.3.261 | MR 0089275 | Zbl 0079.27902
Partner of
EuDML logo