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0. INTRODUCTION

Let Ay, 0 < a < n, denote normalized a-dimensional outer Hausdorff measure in
R" (n € N), which reduces for integral « to the outer Lebesgue measure on R* C R"
(Ao being the counting function). We often write

A =L, MA-1=H, and A(E)=|E|e for ECR".

It is convenient to speak of a-null sets, a-finite sets, and o,-finite sets if resp. Ao (E) =
0 or Aq(E) < oo or E is a countable union of a-finite sets. As class A we define the
collection of all compact sets A C R", whose boundary §A is (n—1)-finite. Federer [2:
4.5.6 and 4.5.12] has shown, in particular, the following important facts: For each A €
A there is a vector function (exterior normal) 714 : A — R", which is H-measurable
and has (euclidean) norin ||i74|| < 1. Furthermore, for any vector function ¥ into R,
which is Lipschitzian on an open neighborhood of A, the Divergence Theorem

*
(1) /U-ﬁAdH_—./divﬁ’
A

3A

holds if the integral on the right is interpreted as the Lebesgue integral [, div#dL.
The main purpose of this paper is to relax the requirements on # for the truth of (1)
by allowing certain exceptional sets.

Suppose that A € A and that the vector function 7: A — R™ is bounded on A.
Let D = Dy (resp. C = Cj) denote the set of points * € A, where 7 is totally
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differentiable (resp. continuous) relative to A. We also introduce the set L = Lz of

points £ € A, where ¢ is locally Lipschitzian relative to A, i.e. where
(L) l7(y) — o)l = O(D)fly — |l if y =z, yeA

holds (but not necessarily uniformly in z). Clearly D C L C C, and by Stepanoff’s
theorem L—D (- means set difference resp. complement) is always an n-null set, cf.

[2: 3.1.9]. Our additional requirement concerns the exceptional sets, viz. that

(2) A=L is 0, _i-finite and |A=C

n-1=0.

Under these assumptions ¥ is H-measurable on A so that the left side of (1) exists.
If we now define div 7 as usual on A° N D and zero elsewhere we may find that the
right side of (1) does not exist as an L-integral. However, we will define in this
paper a new type of Perron integration such that the right side of (1) does exist with
this interpretation and yields the correct value, so that the divergence theorem (1)

becomes true. We formulate this briefly as

Theorem 1. If A € A and the bounded vector function v: A — R" satisfies (2)

then (1) holds with x indicating a certain Perron type integration.

This is an improvement over several known results which will be discussed in detail
in section 1. In particular, it contains the remarkable result of Besivovitch concerning
a continuous function of a complex variable on an open set, which says: if this func-
tion is locally Lipschitzian there except for points of a o-finite set then the function
is already analytic there provided that the Cauchy-Riemann equations are satisfied
almost everywhere, cf. Saks [18: p. 197]. We mention this result especially, because
the ideas of Besicovitch, in abstracted form, will be at the very root of the Perron
type integration defined in this paper, cf. our Decomposition Theoremn (section 4).
A result, which is very similar to Theorem 1, has been obtained by Pfeffer-Yang [17],

but there exceptional sets do not include the situation of Besicovitch.

The proof of theorem 1 will be based on one hand on Federer’s result for test
functions, e.g. vector functions of type C}(R™) or C§°(R™) or the like, where the
index zero refers to the requirement of bounded support. In particular, we shall use
(1) for constant and linear vector functions. On the other hand we use a general
result about the integral representation of an additive set function which we will
describe in the following. Given A € A we denote by A(A) the collection of all sets
BeAwith BCA. Ifv: A — R" is bounded and H-measurable then

(3) F(B) = F(B,7) = /a-n[, aH
oB



is defined for all B € A(A). It is known that this set function F' is additive on A(A)
in the following sense:

(4) F(B): F(Bl)-f-F(Bz) for B],BQE.A(A),

provided that B = B; U B, with disjoint BY, BY (this situation will be abbreviated
by B = B, W By; B° denotes the interior). Given a set function F': A(A) — R and
a point & € A, we consider the conditions

(A) F(B) = O(1)|0Bl.-:

(©) F(B) = o DJBL, } if B € A(A) with z € B and d(B) — 0,

where d(B) denotes the diameter of B and the O-constant may depend upon z. The
set of all z € A satisfying (A) resp. (C) will be denoted by A = Afp resp. C' = CF.
In case that F is given by (3) it is clear that Ap = A and Cp D Cy (by subtracting
from ¥ the constant vector v(z)).

A set A € A will be called p-regular, o > 0, if
(o) d(A)" < o|Aln and [0A]-1 < ed(A)"

holds. The first condition is the typical regularity condition used for differentiation,
while the second condition ensures that the boundary does not oscillate unnecessarily.
A very similar condition is used by Pfeffer-Yang [17], and it may be useful in this
context to remember the inequalities

[Aln < end(A)", |Aln < end(A)|0 A -1, lAIIi'l < enl0AlL -y,

where ¢, denotes certain positive absolute constants. We define A, to be the collec-
tion of all A € A which are g-regular, and 4,(A4) = A(A)NA,. Given a set function
F: A(A) — R and a point € A° N Cr we consider the condition

(Lp) F(B) = O(1)|B|. if B € A,(A) with z € B and d(B) — 0,

where the O-constant may depend upon z and p. The set of all z € A°NCF satisfying
the condition (L,) for all ¢ > 0 will be denoted by L = Lp. Finally, given a set
function F': A(A) — R and a point 22 € A°NCr we consider the condition that there
exists a number f € R such that

(Dy)  F(B)=(f+o0(1)|Bl. if B € A,(A) with z € B and d(B) — 0

29



holds for all ¢ > 0. We call F differentiable at r if this condition is satisfied and
denote by F(r) the unique value f. The set of all z, where F 1s differentiable, is
denoted by D = Dp. At points x € A, where F 1s not differentiable we always set
F(:r:) = 0. According to the definitions we have D C Lp C A° N CF. In case that
F is given by (3) we easily obtain

(5) LFr D AN Ly, DF D2 A°AD;  with F = divé on A°N Dy

by subtracting from (y) the constant term o(z) resp. the linear term v(r) +
7'(z)(y — x) and using (g), which implies d(B)|0B|,-1 = O(1)d(B)" = O(1)|B|x.

If we make the assumptions of theorem 1 the additive set function F' given by (3)
has the property that its exceptional sets satisfy
(6) |A=D|, =0, A-~L is o, _;-finite
|Aﬂc'ln——] =0, A= A:

because these statements follow from the corresponding statements about the excep-
tional sets for v.

In section 2 we shall introduce *-integration so that the Fundamental Theorem of
Calculus holds in the following form.

Theorem 2. If A € A and F is an additive set function A(A) — R satisfving (0),
then F is x-integrable over A and F(A) =*[, F.

Since values of the integrand on n-null sets are irrelevant, theorem 1 follows im-
mediately from theorem 2. We remark that theorem 2 is of a general character and
not directly related to the divergence theorem. Furthermore, only a small part of
Federer’s results were used to check the assumptions of theorem 2. Nevertheless we
obtain theorem 1 which is a considerable improvement concerning the divergence
theorem.

The proof of theorem 2 will be given in section 3. In section 5 we apply theorem 1
to a two-dimensional situation and obtain a form of Green’s theorem with exceptional

sets.
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1. DISCUSSION OF KNOWN RESULTS

It is natural to ask for minimal assumptions on A and v which imply the Divergence
Theorem (0.1). The conditions for A will be the weakest in some sense if we consider
(0.1) only for test functions. Since the left side of (0.1) represents a continuous linear
functional on vector functiouns of type C'(9A), an equation like (0.1) can only hold for
all test functions if the right side can be extended to such a functional. Matik [11]
has completly characterized such sets A and Kartak-Marik [10] have shown that all
A € A have this property, which also follows from Federer’s results. Since no further
simple sets are known, which have Mafik’s property, we shall be satisfied with the
class A for the moment. This answers the geometric part of our question.

Now we turn to the analytic part of our question, which concerns the conditions
on ¥ and the (related) type of integration to be used. First we consider the case,
where A is an n-dimensional interval (always compact with A # () and ¥ is totally
differentiable everywhere or at least in a neighborhood of A. Then the left side
of (0.1) clearly exists, while div ¥ may not be L-integrable. Mawhin [12] [13] has
defined suitable types of Perron integration, so that the integral on the right of
(0.1) exists in his sense and the equation (0.1) holds. The same result could have
been obtained with the Perron integration defined by Bauer [1] in 1915 by means
of a corresponding Fundamental Theorem of Calculus. All these cases share some
regularity condition for the intervals used in the definition of the integral, cf. also
Jurkat-Knizia [7]. Jarnik-Kurzweil-Schwabik [3] introduced another type of Perron
integration yielding the same result, where the regularity condition is replaced by
bounds for certain sums (n-dimensional control conditions). In summary, in our first
case there are several possible interpretations of x-integration over intervals which
make (0.1) correct without any further assumptions; moreover, if div 7' is L-integrable
they agree with L-integration.

Next we discuss more general sets A while we keep the assumption that ' be totally
differentiable everywhere or at least in a neighborhood of A. Here the problem is
to define a suitable Perron integral over such sets. This important step was first
made by Jarnik-Kurzweil [4] for sets A with a relatively smooth boundary yielding
the result that (0.1) holds automatically with this interpretation of *-integration.
Their later papers [5], [6] are based on an interesting combination of partitions of
unity with related n-dimensional control conditions. Another far-reaching appproach
was made by Pfeffer [16] and Pfeffer-Yang [17] leading in various steps, including a
transfinite induction, to a Perron type integration for all sets A € A so that (0.1)

holds automatically also with this interpretation of x-integration. It is not clear
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yet how Pfeffer-Yang integration is related to Jarnik-Kurzweil integration, but both
extend L-integration.

The final and most interesting step consists of relaxing further the conditions on
v. For instance, differentiability should be restricted to A% while continuity may be
relevant along the boundary. Clearly the boundary plays the role of an exceptional
set and by dividing A into parts one could permit further exceptional sets even in
A%, While certain exceptional sets were allowed in Pfeffer [15] and Jarnik-Kurzweil
[6] the greatest progress in this direction was made by Pfeffer [16] and Pfeffer-Yang
[17]: They require that A—D is contained in a compact set which itself is a countable
union of compact sets of finite H-measure and that A-C is contained in a compact
set of H-measure zero (assuming anyway that ¢ be bounded). These conditions
are stronger than our condition (0.2), while the relation between the corresponding
integration processes is not clear yet. The most general exceptional sets have occured
earlier in the work of Besicovitch, cf. Saks [18: p. 193], and our theorem 2 may be
viewed as a kind of improvement over theorem 4.4 stated there.

This discussion was based on a thesis by Nonnenmacher [14].

2. PERRON INTEGRATION WITH EXCEPTIONAL SETS

Let A € A be given. A partition II of A consists of finitely many sets A, € A(A)
together with points x € A such that A = |4 Ay (i.e. A = UA; with disjoint AJ).
A gauge 6 = 6(-) is any positive function 8 on A. The partition Il is é-fine if always
d(Ar) < 6(zx) holds. The partition II is called (g, o)-regular with ¢ > 0,0 > 0, if
the inequality

(1) S 104kl < o

AkEAe

holds. This controls the contribution of those parts of I which are not g-regular. It
is an (n — 1)-dimensional control condition and sort of related to the n-dimensional
control conditions of Jarnik-Kurzweil-Schwabik [3]. Using condition (1) it is possible
to define Perron integration so that (0.1) holds if 7 is differentiable in a neighhorhood
of A. However, if there are exceptional sets of various kinds we introduce also
corresponding control conditions. For simplicity we work with three kinds only. Let
M = (M;), N' = (N}), N = (N/!") be three countable families of exceptional subsets

in R™ so that all occurring subsets are mutually disjoint and always

(2) |A1i|n—1 < OO, |Nilln = 01 INi“ln—l = 0
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is satisfied. In such a case we speak of an exceptional system M, N’, N''. Let
KN = (N;), A" = (A;), A” = (AY) be three corresponding families of positive numbers
and consider the following control conditions for Il (to be satisfied for all 7):

(3) Yo 10 S Koy Do 1Akl AL D 104kl S A

€M, TREN! zrEN!

They control the contribution of those parts of I1, which are related to an exceptional
set in a way that depends upon the size of the exceptional set. Note that condition
(3) for 11 depends only on the choice of (M, K; N’ A", N, A"). A §-fine partition
of A satisfying (1) and (3) will be called admissible and they are characterized by
the data (M; N/ N 0,0, K; A", A", 8). If we increase o, o, N;, A, AY, §(-) clearly
more partitions will become admissible (monotonicity). Intuitively speaking we think
of (9,0, ) as bounded terms and of (A’ A” §) as small terms.

Given a partition Il of A € A4 and a function f: A — R we may form the Riemann
sum

(1) S =) fe)| Akl
k

Definition. Given A € A and p > 0, a function f: A — R is called g-integrable
over A if there exists an exceptional system M, N', N’ and a number ' € R qUFh
that for cach choice of o, K" and € > 0 there are corresponding A’; A", é with the
property that

(9) SO, ) - Fl<e

holds for all admissible II. If this is true for all sufficiently large o the function f is
called #-integrable over A.

Clearly, the property of being p-integrable over A depends on A and g only; conse-
quently, the property of being #-integrable over A depends on A only. The collection
of all functions f: A — R having these properties will be denoted by P,(A) resp.
P,(A). If the exceptional system is specified in advance we speak of g-integrability
relative to M, A/, N””. In this connection the following geometric result is essential.

Richness Property (R). For any A € A, any o > c,, and any exceptional
system M, N', N there are corresponding choices ¢ = ¢*, K = K* (fixed and
depending only on ¢, A, M, N, N'') such that for any choice of A', A", § there will

exist admissible partitions of A. (Here, ¢,, denotes a positive absolute constant.)
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This will be shown in section 1. Because of (1) we shall alwayvs assume o > ¢
. - = n

in the definition above. If we wish we may also assuiie @ > 0% and all Ny 2 N7 =0

that condition (H) is never cpty.

Now we sce that o-integrability over A relative to the exceptional system M.
NN is equivalent to the Cauchy condition: For cach o, K and ¢ > 0 there are
corresponding N0 A" 8 such that

(6) [SOL) = SO < s

holds for all admissible 11y, oo 1 we introduce upper and lower integrals by mcans
of (always assuming o > ¢, 0 > 0 all Ny > L))

Sf(j AMOANT ANy = sup il sapS(S, )

(a k) (A8

SoULCAMONT AT = il sup il S(SL 1
(K1 arar sl

it is inmediate that e-integrability relative to M. AY A is equivalent to
(%) Sy =sST(=1)eR

while .57 < Hj holds i general. The sufliciencey of (6) follows via (8) and makes
use of (R). Let us denote the common value of Hf by S, = So(f, AL MU AT
it exists as a finite number. The following const ruclinn will show that this number
is independent of M, N A” and may, therefore, be (lom)tml by ‘[\ f.

Guen o > 0 and (wo creeplional sysltems (\/(1 AT (Mo NNt
is a third crceplional system (MGN' AN) with the jo[lou,'my properly: if we pre-
seritbe for these systems rvesp. the data (A A", 80(0), (25" 84()). (0. V)
we can find resp. dala (N, AN, (X, A7, 0(0), such that all partitions of A which
are admisstble with respect to (M N N 0.0, Ko AN 8(9)) will also be ad-
misstble with respect (o (M N N 0,00 N5 N AN 80(0)) and with respeet to
(Mo NSNS 0,00 N5 2N 0N 84(0)) ; morcover the choice of [N and o N can be

based on I\ alonc independently of the other preseridbed dala.

To find the new system we form the family M by uniting the famihies M and
Mo, e M = M UMy and similarly A = ATUAT A = AT UANY.

If the exceptional sets were all dl\]Ollll the um(unmg data would be obvious.
Suppose that these controlling data are N, A A" S 8(+). Now we want to construct
the new system M, A7 A7 in such a way that the controlling data K. N0 A",
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o(-) imply the situation before except that K will be replaced by K'(N). In M we
separate the Al by subtracting the }\~IJ with j < 7. This changes K in the permitted
! .
Ni; NN, as new sets with new controls Al Similarly we treat A Now the sets

way. In A7 we subtract, e.g., from N{; all NJ., but we also introduce the intersections
in the changed system M, A, V" are disjoint in each group. Next we subtract the
sets of N from those in M. This changes A again in a permitted way. Finally we
subtract the sets of N’ or M from those in A7, Here is it important to notice that,
e.g.,
: , ,
E i-"kln <oy § b(-lfk)l()f‘kln—l < Aij

rkE"\—’l’ﬁxﬁj rkeﬁ:nﬁ]

can be arranged by bounding é(-) suitably on A~’I-' N /Wj, since these sets are disjoint.
After all the sets are separated we have arrived at the desired system M, N/, N,
and we know that controls with arbitrary A and suitable A’} A”) §(-) will imply the
original controls with A = K'(N) and the prescribed A, A, S() O
Now suppose that f is g-integrable relative to (M; N, M) and (Ma; N, NY')
with corresponding values F| and Fy. Then the construction implies that f is also
g-integrable relative to M; N, A" with corresponding FF = F| and F = F4, hence
Iy = Iy, 'This shows that ng S is uniquely determined by f and A for each f € P,(A).
In case that f € P.(A) it is easy to see that DfA f is the same number for all 0 > ¢,.
This common value will be denoted by *fA f. The same construction also proves: if
N1 € Po(A) and fy € Pu(A), then fi + f2 € Po(A) and ‘fA(fl + f2) :*fA fi +*fA fa.
Trivially, if f € Pu(A) and @ € R then af € P.(A) and *fA af =a¥, f.

Next suppose that A, B, C € A and A = BW('. Observe that a partition [1; of B
and a partition Ils of (' together give a partition Il of A with bounds ¢(A) = o(B)+
a(C), K(A) = K(B) + K(C), A'(A) = A'(B) + A'(C), A"(A) = A"(B) + A"(C).
If f € P,(A) and a possible exceptional system has been selected we determine for
given o, I\', € corresponding A’, A” é according to the definition of p-integrability.
If we now consider decompositions Iy of B and Iy of C' with bounds %a, %1\', ,IEA’,
%A“ we obtain decompositions Il of A which satisfy (5). Using (R) it is easy to
see that the Cauchy conditions for B and C are satisfied so that F) :E’fﬂf and
s :“fL, S exist, and it follows

(9) Q/Af:Q/B f+g/cf.

This implies the following result: If f € P.(A) then F(B) = Lfo ezists for all
B € A(A) and defines an additive set function A(A) — R.
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Finally suppose that A € A aud f: A — R is zero except on aset N with |N|, = 0.
We can decompose N into countably many sets N/ so that f is bounded on each
N!. Then using N’ = (N}) alone as exceptional system for all p the Riemnann sums
will be small for suitable choices of A’. This shows: f € P.(A) and 'fA f=0. Asa
consequence, *-integrability and the value of the integral do not change if we alter

the integrand on an n-null set.

Further general properties of x-integration will be developped in a later paper,
in particular, the converse of (9) (additivity) and that *-integration extends L-

integration.

3. PROOF OF THE FUNDAMENTAL THEOREM

We know that the integral .fo represents an additive set function. A central
question is which additive set functions can be represented in this way. Theorem 2,
i.e. the Fundamental Theorem of Calculus, gives a partial answer to this question.
There are other types of Perron integration for which the answer is completely known,
cf. Jurkat-Knizia [7], [8].

Proof of Theoremm 2. We assume that F' is additive on A(A) and satisfies
(0.6). Let L-D = N', C-L = M, A~C' = N", so that A is the disjoint union
DUN'UMUN" and

(D [N|p = 0, M is o, -finite, IN'lnc1=0

holds as a consequence of (0.6). We fix ¢ > ¢, arbitrarily and select the exceptional
system as follows: Because (L,) holds for € N’ there are positive functions K’(-)
and 6;(-) on N’ such that

|F(B)| < K'(2)|Bln if B € A,(A), z € B, d(B) < 6,(z)

is true. Hence we can decompose N’ into countably many n-null sets N; where K'(-)
is bounded, say by K] > 0. then we have

(2) |F(B)| < K!|Bla if B € A,(A), z € B, d(B) < &(z), = € N/.

Next we decompose M into countably many (n— 1)-finite sets M; and reimnark that
(C) holds whenever & € M;. So, if we select any positive numbers ¢;, €/, there is a
positive function é5(-) on C' D M = UM, such that

3) |F(B)| < €i|0B|n-1 if B € A(A), ¢ € B, d(B) < §2(z), z € M;
|F(B)| < €'|0Bln-1 if B € A(A), z € B, d(B) < é2(z), z€C
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is true. Because (A) holds for z € N’ there are positive functions K”(-) and é3(-)
on N’ such that

|F(B)| < K"(2)|0Bn- if B € A(A), z € B, d(B) < b3(x)

is true. Hence we can decompose N into countably many (n— 1)-null sets N/ where

K"(-) is bounded, say by K/ > 0. Then we have
(4) |F(B)| < K!'|0B|n-1 if B € A(A), z € B, d(B) < §3(z), z € N/'.

Since g is fixed also the exceptional system M = (M;), N' = (N/), N"' = (N/') is
fixed as well as 6,(-), K’ = (K}), 835(-), K" = (K!"), while the choice of §5(-) depends
on additional numbers ¢;, €.

that

Finally, there is a positive function é4(-) on D such

()

F(B) — F(z)|Bln| < €'|Bla if B € Ay(A), x € B, d(B) < 64(z), z € D
1s true.

Now we want to show that F is g-integrable over A relative to M, N, N with
F = F(A). Suppose that o, k', and € > 0 are arbitrarily selected, let A’ A", §(-)
be undetermined for the moment, and consider all admissible partitions I of A. We
have, of course,

(6) F(A)=> F(Ax)
k

and break the sum on the right into five pieces according to the following summation
conditions.

Z:rkEN”; ZZI};E}W; ZZIkEL, Ak¢Ae;
1 2

;:IkENI, AkEAg} ;:.’CkED, AkE.AQ.

This is a complete decomposition and we have accordingly
(7) F(A):;+22:+;+§4:+25:.

If we assume 6(-) < 8;(-) on N, 6(-) < b2(-) on M, 6(-) < b3(-) on N”, and 6(-) < 84(-)
on D we obtain the following estimates using (4), (3), (3), (2), (5) respectively with
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B = Ap, r = rp in conjunction with the control conditions:

¥ O3S DD SICIANMEES WSS

7 "'kEAV,”
(9) 1T < Z Z iAo <Y s A,
2 i reEM, ;
(10) |Z! S Z c'/|(.)"‘k|n—l < o,
3

J‘,\E(,',/\ke./‘g

(11) ISI<d . > Kl < DOKIA
4 N

i rREN!ALEA,

(12)

< Z 5l|"l"n < €A

D (F(A) = Pl Akla)

J‘kED,/\kEAg

If we restrict 8(-) further so that IF(;:?)M(J:) < ¢ holds on A, we also obtain

ST P A <Y TP en d(Ag) [0Ak] -

rh€D,AKEA, ALEA,

(13)
<en Z II:‘(J:k)]rﬂ(l'k) [0A i1 S e € o
AkEAL,

Finally we select g5, ¢/, A" = (A}), A” = (AY) so that the last term in each of the
six inequalities (8)-(13) is < /6. Then 04(+), 84(+) are determined and 8(-) can be

Z F(*’k‘) [Akln

ry€D

2t >

TrED ALEA, rr€ED AxEA,

found as required. Since
{

S(F )
(14) (14)

we infer from our six inequalities
(15) |S(F, 1) = F(A)| < e
for all admissible I1. This proves ng F= F(A) for all ¢ > ¢, as desired. a

Remarks. The proof above shows very clearly how the given properties of F
(in terms of exceptional sets) are matched with control conditions for I so that the
corresponding parts of the Riemann sums behave as desired.  And exactly these
restricted Riemann sums have been used to define our Perron type integration. Ob-
viously this procedure can be generalized to cover other ‘singularities’ of I by meaus
of corresponding Perron type integrals. Further results in this direction will be de-

velopped in a later paper.
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4. Tne DECoMPOSITION THEOREM

Here we give our abstraction of the ideas of Besicovitch as presented in Saks [18:
pp. 192-195] which leads to a geometric result not unsimilar to Vitali’s covering
theorens.

Let 1 be a fixed cube (compact with 17 # ) in R" which we decompose into
2" subcubes of half the size, called the dyadic subcubes of level 1. Repeating this
process with cach of these subcubes we obtain the dyadic subcubes of level 2 ete.,
in general of level h € Ny, where it = 0 corresponds to 1 itself. We denote by 7,
the collection of all dyadic subcubes of level h or higher. Now suppose that [ is a
subset of [ with |F], < oo, where 0 < o < n. According to Lemma 4.1 in Saks the
following s true. For each h and each £ > 0 there is a countable family (.J;) in 7,

which satisfies

I

(1) D> AT < e (JE]a +9)

i

with an absolute constant ¢,,, and which covers I completely in the following sense:
For cach o € FE there is a level h(x) such that all dyadic subcubes of level h(x),
which contain &, actually belong to (J;). This result will be strengthened by using
an arbitrary positive function o(-) on I. We denote by J; = J7(F) the collection of
all dyadic subcubes J for which there is an 2 € 0 Jwith 8(x) > d(J).

Lemma. Suppose £ C 1, ], <o (0 < a < n). Then, for cach positive 4(-) on
I and cach ¢ > 0 there is a countable family (J;) in J& which covers IV completely

and satisfies (1).

Proof. Let (i = ((F,8) be the set of all points & € T with the property that
any J € Jy belongs to J if & € J. We obscrve that

-Gy = U{J:JeTJ & T}
is a Borel set and so is (7. It is immediate that
Gn/ G=UGy D EM /)

holds. Hence, if we form o = ENGy, Ey = N (GR=Gy_y) for b > 1, it follows

o0

o0
E= U Ey and  |E|a = ZIEh["‘

h=0 h=0
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Furthermore, any J € J, which meets Ej belongs to J; by our definitions. By
the result above we have for each h a countable family (J4;) in J, which covers E),
completely and satisfies

(2) Z(I(Jh])a < Cn (lEhIa + .Zh%)

1

If we drop all J,; which do not meet E} these statements are still true; moreover, the
remaining Jj belong to 7. If we now unite our families we obtain a new countable

family (J;) which meets the requirements of the lemma. a

Now we formulate our Decomposition Theorem.

Theorem 3. Suppose that the cube I is the disjoint union of countably many
subsets E,, with |Enlq,, < 00 (0 < am < n), and that a function 6(-) > 0 on I and
numbers €,, > 0 have been selected arbitrarily. Then there are finitely many dyadic
subcubes I}, and points zy satisfying I = ¢ Iy, i € Iy, d(I};) < é6(zy), and

(3) > d(L)* < enl|Emla,, +em)  for allm,
zx€EEM

where c¢,, denotes a positive absolute constant.

Proof. We apply our Lemma to each E,, and obtain, thereby, for each m a
countable family (J,,;) in J;(E,,) which covers E,, completely and satisfies

(4) Zd(‘]mj)am < Cn (lEmlam + Em)-
J

By uniting our families we obtain a new countable family (J;) of dyadic subcubes
which completely covers I (in our special sense). Any family with this property
contains a finite subfamily (/) such that [ = [#) I. This can be seen by contradiction:
If I cannot be represented in that form, the same is true for a subcube of the first level,
which contains such a subcube of the second level etc. So there is a nested sequence
of such subcubes going through all levels which converges to some z € I. But in view
of the complete covering there is a level h(z) at which all cubes of that level, which
contain z, are in our family. Hence, when the nested sequence reaches the level h(x)
our subcube must occur in (J;) and has a trivial representation contradicting the
construction.

We now select a finite subfamily (/i) such that [ = |H[. Each [y is a Jy,;
with m = my and since this Jp,; € J§ (Ey), we many select an 2, € £y, N i
with 8(zt) > d([r). Because the sets E,, are disjoint we can recover my from the
condition z; € Ey,. Hence all I} with z; € [, must be certain cubes J,,;, and
condition (3) follows from (4), while the other requirements are already satisfied.

O
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In our application we use a covering version of the decomposition theorem.

Thvorvm 3. Let A be a compact set and (L) be a countable family of disjoint

sets with

o, <00 (0 < aj <n). Then, for cach function 6(-) > 0 on A and any
numbers €; > 0 there are finitely many cubes Jy and points xj satisfying A C |4 Ji,
rp € AN Jg, d(Jr) < 8(xr) and

ST AU < enl|Bjla, + ) for all j.
J.‘kEEJ

Proof. Without loss of generality we may assume E; C A. Then we select a
cube I D Aand set E = [-UE;, |E|, < oo, so that I is the disjoint union of E and
the £j. Finally we define é(x) on I=A as the distance from 2 to A. Now we apply
Theorem 3 and keep only those [ with xp € A. Since the [ with 2 € A do not
meet A the result follows. O

Our next aim is a proof of the richness property (R). We begin with a remark:
Suppose that I7 s an (n— 1)-null set and M 1s an (n — 1)-finute sel. Then, for each
£ >0 there ts an open set (¢ D F with |GG M|,,—; < e. This can be scen as follows.
According to Saks [18: p. 53] there is a sequence of open sets G, \, G D £ with
|G’ |n=1 = 0. But then |G, VM|, =y — |GV M|,,—; = 0, which implies the result.

A trivial observation is that all cubes are g-regular, if ¢ > ¢, with a suitable
absolute constant ¢, > 0. From now on ¢ > ¢, will be assumed.

Proof of (R). We form (Ej) by uniting (M;), (N{), (N{') and set a; = n — 1
if £ is M; or N/, and o; = n if Ej is N/. The function 8(:) > 0 on A and the
numbers €5 > 0 (representing €7, €f, €/) will be determined later.

Now we apply theorem 3’ and set Ay = AN Jp € A(A). Clearly A = |4 Ay,
2k € A, d(Ay) < d(xg), and for all

(5) Z ()" < en(| My +e€f) = K! (choose ¢ = 1),
TryENM,
(6) DA™ < enlIN/ +€h) = enel,
TkEIV,I
(7) Z d(Jk)”_l < Cn(lllvl’”|n—1 + 5;/ = Cn 57-
IkEN'“

Thus we have obtained a é-fine partition of A, and we are now concerned with the
control couditions (2.1) and (2.3).
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Since |Arln < | Jkln < en d(Jg)", we can guarantee

(3) Yol <A

ry€N/

by choosing €} small enough in (6). Next we observe that

DAy = d(J N A) C(0Jr)U(JINIA),

which umplies
(9) 10AR =1 < end(Je) ™+ I 0 oA

Using the same arguments as in section 2 1 connection with joining two excep-
tional systems we might have assumed at the beginning (without loss of generality)
that somie of the sets N,-” together with A/, form exactly 0. Furthermore, we may
require that 8(x) is less than the distance from x to the exterior of A for all » € A"
This implies that J;, C A if £ € AY) hence

D 10Ao1 € D0 10A o S ew D d(I)" T 4 [0A] -y

ArgA, rr€EDA rR€DA

Since we may assumne that all €/ < 1/2° we have

Z d(J)" ' < Z d(Jg) ! +Z Z d(J)""!

TREIA rir €M, i rpeN

SRT+ ) eae! <K+ 2,
i

and therefore

(10) 37 10Ak=r < enl K] +20,) + [0A]ioy = 0™
A€ A,

Now the sets A, are disjoint from JA for i > 1, so we have for i > |

D10t = D 10Tkl < Y ead(Ji)" !

(11) k€M, €M, rREM,

<en N = K}

and for 7 = 1 as above

D 0Adumy ew Do d()" T 10

(12) £y €M, €M,

<enk) +]0A

n—-1= I\;
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For those N/ which are disjoint from JA we have

(13) Z l(‘)Akln—l = Z |0Jk|n—l g Cn z d(Jk)n_l S A:I

ry€N/ rx€N/' ry€N;

by choosing €/ small enough in (7). For the other N/, which are then contained in

0A, we have

> 10Akor Sen D d(I)" T+ Ui N DAL,y

(1) rx €N/ rEN!
where U; = U JS.
rr€N/

By the remark before the beginning of the proof there exists an open set (; D N/
such that |(; N OA|L -1 < ;—,A;’. By restricting é(-) on N/’ we can guarantee that

[I; C (i;; and by choosing €/ small enough in (7) we are certain that (14) implies
- y ge g

(15) > 10Aka -1 < AY
IkEN,”

also for these [~onlzli11ing Ni“- Now all conditions of (R) are satisfied with o* and K*
dependent. only on A, M, N/, N, .

It is obvious that our decomposition theoremn can be used to construct partitions
which satisfy further control conditions which in turn enables us to treat further

singularities. This will be developped in a later paper.

5. GREEN’S THEOREM WITH EXCEPTIONAL SETS

Let v be a rectifiable simple closed continuous curve in R? and G the encircled
region according to the Jordan curve theoreni. We assume that v is so oriented that
(i is encircled in the positive sense. Let A be the set (¢ united with all points of 5.
Then A € A, A° = (7, and JA consists of the points of 7.

For test functions & = (f, g), e.g. of type C}(R?), Green’s theorem is known in the
form

(1) /(f(ly—gdar):/(liVﬁdE,(lin)‘:f,+yy;
0% A

more than that has been shown, e.g., by Shapiro [19]. Comparing with (0.1) in
theoremn | we see that

(2) /(f(ly—gdr):/a v-1adH
A

~
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holds for test functions, and since both sides represent continuous linear functionals
the identity (2) extends to all functions f, ¢ which are bounded and H-measurable
on JA. (Parameterize 4 by arc-length s which generates the H-measure along d4 in
the present case, cf. Saks [18: pp. 123-125].)

Now we can use theorem | to generalize (1) as follows using the notation of the

introduction.

Theorem 1'. Suppose that v and A are as described above and that © = (f.g):
A — R? is bounded and its exceptional sets satisfv: A=L is o\-finite, |A=C'|, = 0.

Then v is H-measurable on A, div U Is x-integrable over A, and we have the identity

(3) /(f(ly—[](l.l.‘):*/ div 0.
¥ A

With somewhat greater cffort we can use theorem 1 to deduce a general form of
Gireen’s theorem, where 4 need not be simple and the winding number with respect
to v occurs on the right side of (3), cf. Jurkat-Nonnemmacher [9]. There are analogues
of this result in higher dimensions which will be discussed in a later paper. Theorem
1’ contains, as a special case, a form of Cauchy’s integral theorem with exceptional
sets and this contains the result of Besicovitch mentioned in the introduction (via

Morera’s theorem).

Postscript. After the paper was finished | received the following preprints from
J. Kurzweil and J. Jarnik: “The PU-Integral: Its definition and some basic proper-

ties”, “The PU-Integral and its properties”.
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