Varieties with modular and distributive lattices of symmetric or reflexive relations.
(English).Czechoslovak Mathematical Journal,
vol. 42
(1992),
issue 4,
pp. 623-630
[4] Chajda I.: Varieties having distributive lattices of quasiorders, Czech. Math. J. (1991) (to appear). MR 1087626
[5] Day A.: A characterization of modularity for congruence lattices of algebras. Canad. Math. Bull. 12 (1969), 167–173. DOI 10.4153/CMB-1969-016-6 | MR 0248063
[7] Pixley A. F.: Distributivity and permutability of congruences in equational class of algebras. Proc. Amer. Math. Soc. 14 (1963), 105–109. DOI 10.1090/S0002-9939-1963-0146104-X | MR 0146104
[8] Vojvodić G., Šešelja B.: On the lattice of weak congruence relations. Alg. Univ. 25 (1988), 121–130. DOI 10.1007/BF01229965 | MR 0950740