[1] R. A. Horn, Ch. R. Johnson:
Matrix Analysis. Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne and Sydney, 1985, (Russian translation R. Horn, Q. Dßonson: Matriqny analiz, Moskva, Mir, 1989).
MR 0832183
[2] P. Kratochvíl, A. Lešanovský:
A contractive property in finite state Markov chains. Czechoslovak Math. J. 35(110) (1985), 491–509.
MR 0803042
[3] T. S. Leóng:
A note on upper bounds on the maximum modulus of subdominant eigenvalues of nonnegative matrices. Linear Algebra Appl. 106 (1988), 1–4.
MR 0951823
[4] A. Lešanovský:
Coefficients of ergodicity generated by non-symetrical vector norms. Czechoslovak Math. J. 40(115) (1990), 284–294.
MR 1046294
[10] E. Seneta:
Non-Negative Matrices and Markov Chains. Springer-Verlag, New York, Heidelberg and Berlin, 1981.
MR 2209438 |
Zbl 0471.60001
[11] E. Seneta:
Perturbation of the stationary distribution measured by ergodicity coefficients. Adv. Appl. Prob. 20 (1988), 228–230.
DOI 10.2307/1427277 |
MR 0932541
[13] E. Seneta, C. P. Tan:
The Euclidean and Frobenius ergodicity coefficients and spectrum localization. Bull. Malaysia Math. Soc. (7)1 (1984), 1–7.
MR 0767334
[16] C. P. Tan:
Spectrum localization of an ergodic stochastic matrix. Bull. Inst. Math. Acad. Sinica 12 (1984), 147–151.
MR 0765108 |
Zbl 0551.15009
[17] C. P. Tan:
Spectrum localization using Hőlder norms. Houston J. Math. 12 (1986), 441–449.
MR 0869127