Previous |  Up |  Next

Article

References:
[1] R. A. Horn, Ch. R. Johnson: Matrix Analysis. Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne and Sydney, 1985, (Russian translation R. Horn, Q. Dßonson: Matriqny analiz, Moskva, Mir, 1989). MR 0832183
[2] P. Kratochvíl, A. Lešanovský: A contractive property in finite state Markov chains. Czechoslovak Math. J. 35(110) (1985), 491–509. MR 0803042
[3] T. S. Leóng: A note on upper bounds on the maximum modulus of subdominant eigenvalues of nonnegative matrices. Linear Algebra Appl. 106 (1988), 1–4. MR 0951823
[4] A. Lešanovský: Coefficients of ergodicity generated by non-symetrical vector norms. Czechoslovak Math. J. 40(115) (1990), 284–294. MR 1046294
[5] A. Rhodius: On almost scrambling stochastic matrices. Linear Algebra Appl. 126 (1989), 76–86. DOI 10.1016/0024-3795(89)90005-0 | MR 1040772 | Zbl 0696.15018
[6] A. Rhodius: The maximal value for coefficients of ergodicity. Stochastic Process. Appl. 29 (1988), 141–145. DOI 10.1016/0304-4149(88)90033-6 | MR 0952825 | Zbl 0657.60092
[7] U. G. Rothblum, C. P. Tan: Upper bounds on the maximum modulus of subdominant eigenvalues of nonnegative matrices. Linear Algebra Appl. 66 (1985), 45–86. DOI 10.1016/0024-3795(85)90125-9 | MR 0781294
[8] E. Seneta: Coefficients of ergodicity: structure and applications. Adv. Appl. Prob. 11 (1979), 576–590. DOI 10.2307/1426955 | MR 0533060 | Zbl 0406.60060
[9] E. Seneta: Explicit forms for ergodicity coefficients and spectrum localization. Linear Algebra Appl. 60 (1984), 187–197. DOI 10.1016/0024-3795(84)90079-X | MR 0749184 | Zbl 0594.15007
[10] E. Seneta: Non-Negative Matrices and Markov Chains. Springer-Verlag, New York, Heidelberg and Berlin, 1981. MR 2209438 | Zbl 0471.60001
[11] E. Seneta: Perturbation of the stationary distribution measured by ergodicity coefficients. Adv. Appl. Prob. 20 (1988), 228–230. DOI 10.2307/1427277 | MR 0932541
[12] E. Seneta: Spectrum localization by ergodicity coefficients for stochastic matrices. Linear and Multilinear Algebra 14 (1983), 343–347. DOI 10.1080/03081088308817569 | MR 0724382 | Zbl 0526.15013
[13] E. Seneta, C. P. Tan: The Euclidean and Frobenius ergodicity coefficients and spectrum localization. Bull. Malaysia Math. Soc. (7)1 (1984), 1–7. MR 0767334
[14] C. P. Tan: A functional form for a particular coefficient of ergodicity. J. Appl. Probab. 19 (1982), 858–863. DOI 10.2307/3213840 | MR 0675151 | Zbl 0501.60074
[15] C. P. Tan: Coefficients of ergodicity with respect to vector norms. J. Appl Probab. 20 (1983), 277–287. DOI 10.2307/3213801 | MR 0698531 | Zbl 0515.60072
[16] C. P. Tan: Spectrum localization of an ergodic stochastic matrix. Bull. Inst. Math. Acad. Sinica 12 (1984), 147–151. MR 0765108 | Zbl 0551.15009
[17] C. P. Tan: Spectrum localization using Hőlder norms. Houston J. Math. 12 (1986), 441–449. MR 0869127
Partner of
EuDML logo