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Czechoslovak Mathematical Journal, 42 (117) 1092, Praha 

TWO CONTRIBUTIONS TO THE THEORY OF COEFFICIENTS 

OF ERGODICITY 

PETR VESELY, Praha 

(Received November 14, 1990) 

Coefficients of ergodicity play an important role in the theory of both homogeneous 
and inhomogeneous Markov chains, see [2, 8, 10, 11, 15]. They have also proved to 
be useful upper bounds of the maximum modulus of sub dominant eigenvalues of 
stochastic and nonnegative irreducible matrices, see [4, 7-9, 12, 15-17]. 

This paper discusses two questions: the accuracy of numerical estimations of the 
ergodicity coefficients, and conditions for the existence of a coefficient of ergodicity 
which is equal to the maximum modulus of subdominant eingevalues of a given 
matrix. 

1. PRELIMINARIES 

We will use the following notation: 
N - the set of all natural numbers; 
R - the set of all real numbers; 
C - the set of all complex numbers; 

<T(A) - the spectrum of a (square) matrix A; 
Q(A) - the spectral radius of a (square) matrix A; 

Lin M - the linear span of a set M C Rn; 
conv M - the convex hull of a set M C Rn; 

|| ||p - the -?p-norm (p e [l,oo) U {oo}). 

Let P b e a n n x n nonnegative, irreducible matrix and let w G Rn be a positive right 
eigenvector of P corresponding to the eigenvalue Q(P). A coefficient of ergodicity 
7|| || with respect to a vector norm || || on Rn is defined as 

v€Rn IMI 
vTw=0 

v^O 
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(we put | |yT | | = ||y|| for all y G Rn). Evidently, 

r ) M | ( P ) = max\\vTP\\ 

vTw=0 

IMKi 

is an equivalent definition. For any ^,-norm || || we put Tp(P) = T]J JJ (P). 

The Perron-Frobenius theorem for square, nonnegative, irreducible matrices is 
fundamental for the theory of coefficients of ergodicity: 

Suppose P is an n x n nonnegative irreducible matrix. Then 
(a) Q(P) > 0 and Q(P) G <T(P). 

(b) Q(P) is a simple root of the characteristic equation of P. 
(c) There exist positive left and right eigenvectors of P corresponding to the eigen­

value Q(P). 
(d) The eigenvectors corresponding to Q(P) are unique up to a scalar multiple. 

The proof can be found in [10]. 

The maximal modulus of a subdominant eigenvalue of an n x n nonnegative, 
irreducible matrix P is denoted by £(P) and is denned as 

cT(P) = max{|A|; A G *(P), A 7- Q(P)} if n > 1 

and 
£(P) = 0 i f n = 1. 

The following propositions show well-known properties of norms on Rn. 

Lemma 1.1. Let V be a vector subspace of Rn and let v be a norm on V. Then 
there exists a norm \\ \\ on Rn such that \\v\\ = u(v) for each v G V. 

P r o o f . Let { t / 1 ) , . . . , t/*)} be abase of V and let 

{t / 1 ) , . . . , „(*), t/*+ 1 \ ..., „(»)} 

n 
be a base of Rn. For each x G Rn, x = J2 aM1^ let 

1 = 1 

À: 

iwi = ^(Ea^ ( i ))+ E к-i-
* = 1 i = k + l 

It is easily seen that || || is a norm on Rn and ||f || = i/(v) for any v G V. D 
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Lemma 1.2. Let V be a vector subspace of Rn and let B C V. Then B is a unit 
ball with respect to a certain norm on V if and only if B is a compact convex set, 
LinP = V and B = -B. 

The p r o o f can be found in [1]. 

Lemma 1.3. Let V be a vector subspace of Rn and let \i, v be norms on V. Then 
there exist positive numbers c\, c% such that C2v(v) ^ /i(v) ^ c\v(v) holds for each 
veV. 

The p r o o f can be found in [1]. 

2 . ERROR ESTIMATION 

For majority of norms explicit formulae are not known for the evaluation of the 
coefficient of ergodicity. Therefore coefficients of ergodicity are estimated numerically 
by a computer. Since 

T\\\\(P)= ™>X\\«TP\\, 
vTw=0 
IMI<I 

the problem is to find the maximum of a continuous function on a compact set. 
Usually it is performed in the following way: a finite set of points v^l\ . . . , t/*) G 
Rn — {0}, i/1) w = ... = t/*0 w — 0 is successively found by any suitable algorithm 
and the value 

||</0TF | | 
f|, ,.(P) = max " ,...,, " 11 ,,v } i < ^ * | |v(0| | 

is taken as an estimate for TJ| | |(P). Therefore it is useful to determine the upper 
bound of the error, i.e. we have to estimate the difference 

where v E Rn - {0}, vTw = 0. 
This problem is solved in Theorem 2.2 and in Theorem 2.3. Tools for the solution 

of this problem are given in Theorem 2.1. 

Theorem 2 .1 . Let V be a vector subspace of Rn and let M be a family of norms 
on Rn. Let there exist positive numbers r\ and r2 such that for each norm v 6 M 
and for each vector v £ V, 

r2|M.2 < "(*>) < n 1Mb 

is true. Then 
( v _ ___\ < ^ (T±s\ v _ w 

K\v(v) ti*>))^ W 1Mb 1Mb 
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aлd 

( v w \ fri\ \ ( v w \ 

fi(v) n(w)J ^ \r2J \v(v) v(w)J 
holds for any norms K, A, /i, v G M and for any v, w G V — {0}. 

P r o o f . Let dim V ^ 2 (the case dim V = 1 is easy). Let K, A, /i, v be arbitrary 
norms from M. The inequality 

(i) к ( V - W \ < r 
џ(v) џ(w) 

holds for any t;, w G V — {0}. 

Let 5(t;) = {s G V - {0}|sTt; = 0} for every v G V - {0}. The assumption 
dim V ^ 2 implies that S(v) -̂  0 for every v G V. If vectors v, tD G V — {0} are 
linearly independent, then let P(t;,tD) be the twodimensional subspace defined by t;, 
w and 0, i.e. P(v,w) = {av + bw; a,b G R}. Let B^ be the unit ball with respect 
to the norm /i. Let v G V, fi(v) = 1, s G •?(*;). Because B^ is a convex set, the set 
Bp fl P(v, *) is convex, too. Furthermore, as t; is a boundary point of HM H P(t;, 5), 
there exists at least one straight line in the plane P(v,s), which intersects the point 
t; and does not intersect the interior of a set B^C\P(v,s). Let t^(v, s) be an arbitrary 
line with these properties. Let Pfi(vi s) be the angle between the straight line t^(v, s) 
and the straight line {av; a G R} (we have fi^v^s) G [0, ^]). Let us put 

p = mi{p^(v,s)\v G V,fi(v) = 1,5 G S(v)}. 

Let us suppose that sin/3 < r 2 / r i . Then there exist a point v* £ V, fi(v*) = 1, and 
a vector 5* G S(v*) such that sin/?/i(i», s) < r 2 / r i . If a1 is the Euclidean distance of 
the point 0 and the straight line t^(v*, s*), then 

d= \\v*\\2smßџ(v,s) < 
џ(v*) rт_ 

r 2 Гi 

1_ 

r\ 

It follows that there exists a point y* G t^(v*,s*) such that | |y*||2 < 1/ri. The 
relation y* G t^(v*,s*) implies fi(y*) ^ 1. Altogether we have r\ | |t/*||2 < /i(y*), 
which is a contradiction to the supposition of the theorem. Thus sin/5 ^ r 2 / r i . 

Let ti(t;,iv) be the angle between the half-line {av; a G [0,oo)} and the half-line 
{aw; a G [0, oo)} for every v, w G V — {0} (we have ti(t>, tD) G [0, x]). Let S be any 
number from the open interval (0,1). 

Let v,w G V and let fi(v) = //(tD) = 1, ti(t;,tD) G [0,(5/5). Let a = ti(t;,tD). Let us 
consider two straight lines p\, p2 passing through the point t;, which lie in the plane 
P(v,w) and contain the angles /5,/J — a with the half-line {at;; a G [0,oo)}. Let us 
put g = pi fl {atD; a G [0,oo)}, /i = p2 fl {atD; a G [0,oo)}, see Figure 1. From the 
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av] a Є [0,oo)} 

0^a<6ß </?<£ 

{fltD; д Є [0,oo)} 

FIGURE 1 

definition of the angle /? we find that tD is a member of the segment between the 
points 0, ft. Hence 

||v - tu||2 ^ max{||t; - g\\2} \\v - ft||2} 

f NI2 • HHI2 . \ 
= max -r-T^ r sina,-r-7 -rr s m a 

(̂  sin(p — a ) sin(7r — p) ) 
< max« . í iif 1 

\ s in ( /? -

» 2 siná 

P 2 . sin a, —.—- sin 1 sin/? •} 

^ 

sin[(l - 6)ß] 

sin a 
r2 sin[(l - S)0\' 

If v, iv G V, A (̂v) = M™) = 1> w0>i w) £ [6P, *"] is valid, then ||t;-ti;||2 5.C ||t;||2+||t/;||2 -̂  
2/r2 is true. We have proved that for all points v,w £V — {0}we have 

(2a) 
V 

џ(v) 

w 

fi(w) 2 Г -

sin[ti(г>,ti;)] 

ř sin[(l -6)ß] 

pгovided ti(г>,tD) Є [0, <$/?); 

(2b) 
V 

ßi(v) 

tD 

fi(w) 2 Г 2 

provided ti(t;,tD) G [£/?, TT]. 
Let t;,iD G V, ^(t;) = v(w) = 1 and let us put a = u(vtw). Let a G [0, <$/?). 

Because | |t; | |2sina is the Euclidean distance of the point v from the straight line 
{atD; tD G R}, 

11 11 11 H ^ v(v) • s i n a 

\\v — tD||2 ^ ||t;||2 sin a ^ ---------- sin a = 
ri ri 
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is true. For a G [<$/?, ?r] we have 

| | u - t u | | 2 ^ inf{ | | x-y | | 2 | x ,y G V, u(x) = u(y) = l,ti(x,y) = a} 

^ inf{ | | x-y | | 2 | x ,y G V,ri||x||2 = rx \\y\\2 = l,ti(x,y) = a} 

= in f { | | x -y | | 2 | x ,yG V, | |x | | 2 = | |y| |2 = l/ruu(x,y) = a} 
2 . a 2 . 1 

= 7"sin ? ^ r - s i n ( o ^ ) -
ri z r\ I 

We have proved that for all points v,w G V — {0} 

sin[ii(i;, u;)] 
(3a) 

provided ii(v,iv) G [0,6(3); 

(3b) 

lv 

i/(v) i/(гD) 
> 

гi 

i/(v) í/(гD) 

provided ii(v, w) G [<$/?,7r]. 
For all points v, til G V - {0} we have 

(4) 
« 2 W 2 

^ -?- sin(ì^) 
rx 2 

= 2sin[-u(t),iy)], 

(5) 
гD 

i/(v) i/(w) 
ś r 2 \v(v) 

w 
i/(w)J ' 

From (1), (2a), (2b) and (4) we obtain that if u(v,w) G (0,6/?) then 

í v w \ sin[ii(i;,i 
* V/i(i;) /i(iD)y ^ r i r 2 s i n [ ( l -

•>)] i 
6)ß] 2sЩu(v,w)] " 2 ttl 2 

ri cos[ìu(v,iü)] 

r2sin[(l-6)ß] 
i; u> 

< ^ 
r2 sin[(l - 6)/?] 

while if u(v, w) € [6/3, w] then 

l«IІ2 | |tľ| |2 

V w 

» 2 «» 2 

" W ) M™) 
2 

^ r j -

ś - -r 2 s i n ( Ш ) 

l ^ гv |i 

l(t7,U>)] 

II U 

IIMІ2 
гD 

IMIІ2І 

IІIMІ2 IИІ2І І2 
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(the case u(v, w) = 0 is easy). 
From (1), (2a), (2b), (3a), (3b) and (5) we obtain that if u(v,w) G (0,8/?) then 

/ v w \ sin[w(v, w)] ri / v w 

\fi(v) u(w)J ^ r2sin[(l — 8)/?] r2sin[u(v, iv)] \v(v) v(w) 

= W sin[(l - 6)13} A ( ^ " TJw)) ' 

while if t/(u, w) G [5/5, ?r] then 

KW(v) »(w))^ri 

( v w \ 
\v(v) v(w)J 

= w sin(ií/?)A VKO ~ K^)J 

Г2 2 r 2 S І n ( Ш ) 

(the case u(v, iv) = 0 is easy). 
For 8 = | we have sin[(l - 6)f3] = sin(±8/?) = sin(|/?) and 

1 Í І < З Í І . 
sin(|/?) ^ sin/? ^ r 2 

This completes the proof. 

Corol lary 2.1. Let \\ \\p, || | | g l || | | r , || | |5 be any £p-norms on Rn. Then 

< 3n2 гv 
Mlr IMIr 

and 

< Зnd 

Mla M a 

гv 

мi. IIMIr I M I r | . 

holds for any v,w G Rn — {0}. 

P r o o f . For any ^,-norm || || and for any v G I2n we have 

n - 1 / 2 | M l a ^ IMIco < IMIP < IMIi < » 1 / a |Mla. 

Hence it suffices to put r\ = n 1 / 2 , ^ = n - 1 / 2 . 

D 

D 

T h e o r e m 2.2. Let V be a vector subspace of Rn, let v be a norm on Rn and let 
A be an n x n matrix such that AV C V. Let r\, r 2 be positive numbers such that 
for each vector v G V 

r2 |Mla ^ "(«0 ^ nlMla. 
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Let opt(_4, v) be the set of all vectors y G V — {0} such that 

v(Av) v(Ay) 
sup (\ = -Vr 
vev v(v) v(y) 
v^O 

(it is easy to see that opt(A, v) / 0). Further, let x G V — {0} and let 

= inf|J 
IMb llí/lb 

; y G opt(A ,4 
The 

vфO 

P r o o f , Let us put 

v(Av) v(Ax) (n\ v(Av) 
sup-y-r-- V r ^ 3 — sup v 'e 
v e v v(v) v(x) \r2J v e V v(v) 

v^O 

(^y[e(ATA)]^e. 

v(Av) 

^ з 

T = sup 
v€V V(v) 
v^O 

For each 8 > 0 there exists a vector y G opt (A, v) such that 

We have 

T -

11*112 1М12 

V(Аx) _ V(Ау) V(Аx) 

1/(х) " V(у) V(x) 

— V 

ŚЄ + Í. 

Ax_ 

,(x)\ v(x) 

I" / y _ x \ Ax ] v(Ax) 

L WJ/) "(*)/ " 

[\~W)~W))\ 
(JL X—)T. 

\v(y) v(x)J 

According to Theorem 2.1 we obtain that 

\"(y) K*) / ^ \ r 2 / 
т ^ з 

^ з 

Uvila IMI-

(а)Ч+.>. 
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Hence 

Further, 

__ u(Ax) 

Ңx) m Tє. 

т <? _„-, Г l Л v I Ь <Ґ Г l ..,-. l Л t ; IЬ 
-P ^ SUp -г-7-— -^ — SUp 

v € V Г 2 | | t ; | | 2 Г 2 t ; € Д » | |V | |2 
v # 0 v ? - 0 

= ^(^л)] 1 ! 2 . 
Г2 

This completes the proof. D 

Theorem 2.3. Let P be annxn stochastic matrix, let V = {v G Rn| __3 v,- = 0}, 
» = i 

let e > 0 and iefc Xe be a finite subset ofV — {0} such that for each v G V — {0} 

x v 
min 

x€Jfc F - Иa 
< e . 

TAen 

for each pG [1,2), 

''<p>^THrФ">'''£ 

T,(P) - max ^ff}' i І2Ч'n'-a''l 

for each p G [2, oo), and 

P г o o f . Let us put 

xex€ \\x 

, m ll*T-эllвo ^ 3 2 

ri = sup 
INI, 

vЄRn \\Щ\2 
v?0 

Г2 = inf Nl-
" € Я - V 3 

v^O 

It is easily seen that 

raIMb ^ IMI- < r. | | t ; | | 2 

is true for each v € V. The reader can verify the following assertions: if p G [1,2) 
then 

_ I K . , . , . . . . n i l - _ .,__.,_ 
r i - | | ( i , i , . . . , i ) l | 2 - n 

_ ! _ _ _ _ _ _ _ _ _ 
2 11(1,0,..., 0)||, ' 
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if p€ [2,oo) then 

_ ||(1,.,...,0)11., 
1 " l l ( i ,o, . . . ,o) | | a - l ł 

_ 11(1,1,. ..,1)11, _ 1„_1,_. 
a-11(1,1,..., 1)11,-n 

if p = 00 then 

_| l( l ,0, . . . ,0) | |oo 
1 ||(i,o,...,o)||a - 1 ' 

_ | | ( l , l , . . . , l ) | | e o _ - ! / . 
2 | | (1 ,1 , . . . ,1) | | 2 

By Theorem 2.2 (we put A = PT) we obtain that 

^ > - . ^ ^ « 3 t e ) ! ' ' < ^ 

where 
H = ni/p-i/2 
^ 2 

for each pG [1,2), 
H _ ni/2-i/p 
^ 2 

for each p E [2,00), and 

r 2 

r i 1/2 
— = n ' 

for p = 00. 
Let Sn be the set of all n x n stochastic matrices. It is proved in [6] that if 

p G [1,00) and n is even then 

1-1/p 

max r«. 
PЄSn 

if p G [1,00) and n is odd then 

l - 1 / P / O \ 1/P 

m a x Гpi 
PЄSn ^ 

if p = 00 and n is even then 
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if p = oo and n is odd then 

/ --»\ n — 1 
max roo(P) = —-—. 

The function f(x) = x 1 ~ p is convex on (0, oo) for each p G [1, oo), hence (n-f l ) 1 ~ p + 
(n - I) 1 "* ^ 2n 1 - p for each n G N, n ^ 2, p G [l,oo). We obtain 

n\ i- i/P 
max rD Pesn 

тAP) < (? ) 

foг any p Є [1, oo) and any n Є N, and 

for any n G N. This completes the proof. D 

3. CONDITIONS FOR THE VALIDITY OF £(P) = T\\ U ( P ) 

In [7] the following important theorems are proved (the symbol £(P) is defined in 
Preliminaries): 

[7, Theorem 3.1.] Let P be an n x n nonnegative irreducible matrix, and let || || 
be a norm on RT. Then £(P) ^ TJJ M ( P ) . 

[7, Theorem C.I.] Let P be an n x n nonnegative irreducible matrix, let w and 
v be positive right and left eigenvectors of P, respectively, corresponding to the 
eigenvalue Q = £(P), and let e > 0. Then there exists a norm || || on Rn such that 
for a = QV/VTW, 

where the matrix norm of a matrix B G i£ n x n is defined by 

||B|| = m a x { | | x T
J B | | : | W K l ) 4 - € i J n } . 

An interesting question is how to find whether there exists a norm || || on Rn such 
that T]j jj(P) = £(P). This problem is solved in Theorem 3.1. Theorem 3.2 shows 
that there always exists a seminorm || || on Rn such that 7]j \\(P) = ^(P). 

Lemma 3.1. Let V be a vector subspace ofRn
f let || || be a norm on Rn and let A 

be an n x n matrix such that AV C V. Then the following assertions are equivalent: 
(a) There exists a norm v on Rn such that 

v(Av) 
sup —T-T- ^ 1; 
vev v(v) 
v?Q 

83 



(b) 
ll-4*f|| sup sup < co; 

keNvev \\v\\ 
v^O 

(c) sup ||-4*i;|| < oo for each v G V. 
k€N 

P r o o f , (a) => (b) The assertion (a) implies that the inequality v(Av) ^ v(v) is 
true for each v G V. It follows that v(Akv) ^ v(v) for each t; G V, it G N. According 
to Lemma 1.3 there exist numbers Ci,C2 > 0 such that c2v(v) ^ ||t;|| -̂  c\v(v) for 
each v EV. We conclude that for all Jb G N 

11-4̂ 11 „ cxv(Akv) ci 
SUP li n < SUP — V ^ r ^ —• 
vev \\v\\ V£v c2v(v) 
v^O v?0 

c2 

(b) =t> (c) For all Jfc G N, v G V the inequality 

x € V 
.r?ÍO 

is true. Hence 
|U*x|| 

sup Ц-4*t;|| -̂  ||t;|| sup sup " „ „ '' < oo. 
Jb€-V kčNxtV \\X\\ 

x^O 

(c) =.> (a) Let {vV\ . . . , t/m)} be a base of V. Let us put G = c o n v ^ 1 ) , . . . , v<m>, 
-t/ 1 ) , . . ., - t ; ( m ) } . Then LinG = V and G = - G is true. Let us put 

7 = max sup Akv& 

2m 
The assertion (c) implies that 7 < 00. For all 0*1, ..., a2m ^ 0, ^ a, = 1, we have 

sup 
keN 

lfcґf>,--am+,>(*) < sup V ] |<*» - <*m+»| U*v ( , ) 
^ T 

Thus the set G* = Q ^ * G is bounded. Let H = convG* and let H* be the 
Jb=i 

closure of the set H. The set H* is a compact convex set, LinH* = V (since 
G C G* C H C H* C V and LinG = V), and H* = -H* (since ,4*G = -AkG for 
each Jb G N, hence G* = — G*, thus H = — H). According to Lemmas 1.1 and 1.2 
we obtain that there exists a norm v on Rn such that {v G (̂.1/(1;) ^ 1} = H*. 

If x G G*, then there exists k G N fulfilling x G AkG. Hence ,4x G -4*+1G, thus 
-4G* C G*. Let v e H. There exist s G N, <*i, ..., a, $> 0 and x^), ..., *(*> G G* 
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such that Yl ot{; = 1 and Yl <*ix^ = v- Ax^ G G* is true for all i = 1, . . ., s, 
•=i «=r 

because AG* C G*. We have 

Лv = A ( è « . « ( 0 ) = í>.>-*(<) Є Я-

Thus ,4H C H, hence AH* C H*. We have proved that if v G H* (i.e. 1/(1;) ^ 1) 
then Av G H*(i.e. i/(i4v) ^ 1). Hence 

sup ——--- = sup i/(i4v) .^ sup 1 = 1. 
v € V ^(v) t/€V v€V 

• 

Theorem 3.1. Let P be annxn nonnegative irreducible matrix such that £(P) > 
0. Let w be a right eigenvector corresponding to the eigenvalue Q(P), and let || || be 
a norm on Rn. Then the following assertions are equivalent: 

(a) There exists a norm v on Rn such that rv(P) = £(P). 
(b)sU P K(P)]- t T 1 | | | (P*)<«) . 

ibeIv 

(c) supK(P)]-*||t;TP*|| < 00 for each v G Rn, vTw = 0. 

(d) If\ is an eigenvalue of P such that \\\ = £(P), then its algebraic multiplicity 
is equal to its geometric multiplicity. 

P r o o f . The equivalence of the assertions (a), (b), (c), follows from [7, Theorem 
3.1] and from Lemma 3.1 (we put A = PT/£(P), V = {v G Rn\vTw = 0}). We show 
that (c) <-> (d). Let Ao, Ai, . . . , Am be all eigenvalues of P, let ao, ai, . . . , am be their 
algebraic multiplicities, and let go, #1, . . . , gm be their geometric multiplicities. Let 
Ao be the Perron-Frobenius eigenvalue of P, i.e. Ao = Q(P), ao = 1 and Pw = Aoti;. 
Let A = diag{Ao, A i , . . . , A M } he the Jordan matrix of P, where Ao = (Ao) and Ai, 
. . . , AM are the Jordan cells of the eigenvalues Ai, . . . , Am. Let T be a regular matrix 
such that P = TAT"1. Finally, let us put V = {v G Rn\vTw = 0}. 

(c) => (d) Assume that (c) is true and (d) is false. Then there exists q G { 1 , . . . , m} 
such that \\q\ = f(P) and gq -̂  aq. It follows that gq < aq(in accordance with 
the well-know inequality between the algebraic and the geometric multiplicity of 
eigenvalues). The number of Jordan cells of any eigenvalue is equal to its geometric 
multiplicity, while the sum of their matricial ranks is equal to its algebraic multiplicity 
(see for example [1]). Hence it follows that there exists a Jordan cell of \q such that 
its rank is at least 2. Denote this cell by AQ (1 ^ Q ^ M). Let u^ be the second 
column of the matrix AQ, where k G N. It is easily seen that 

«(t) = (JbA t-1,Aj,0,...,0)T 
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for each k G N. u\ (= Aj) is a diagonal element of the matrix A*. Let u^ lie in 
the rth row and in the rth column of the matrix A*. The inequality r ^ 3 is true 
since the rank of Ao is 1 and the rank of AQ is at least 2. Let AK be the rth column 
of the matrix A* and let F(r-i) be the (r — 1) st column of T. The first column of T 
is equal to w (because PT = TA and Ao = (Ao)) and r — 1 ^ 2, hence F(r-i) ?- cw 
for each c £ R. It follows that there exists a vector z G V such that 2r_i ^ 0, where 
t = (< i , . . . . t n ) = z T T. We have 

K(P)]"*|<TA(*r)| = [ t fPM-^xtA*- 1 + *rA*| 

^[mr'Qtr-ik^-^) 
= K(P)]-1 |Wr-i|-|M, 

thus 
limK(P)]-t|zrTAfr)| = oo, 

Jk—>oo 

where A/ \ is the rth column of Ak. Hence 

whence 

lim [í(P))-k\\zTTAk\\ = oo, 
k—• o o 

8up[í(P)]-*| |zTP*|| = sup[í(P)]- ' ; | | ž
TTA f cT-1 | | = oo. 

k£N keN 

This contradicts (c). 
(d) => (c) Let (d) be true. 

[t(P)]~kPk = Tdiag{K(F)]-*A§,... , [t(P)]~kAk
M}T-1 

holds for each k G N. The first column of T is equal to w, because PT = TA and 
A0 = (A0). It follows that for each Jb G N and v G V the vector [t(P)]~k(vTPk) = 
[Z(P)]~k ((vTT)AkT~l) is independent of the Jordan cell Ag = (A§). Let e G { 1 , . . . , 
m) and let A^ be any Jordan cell of the eigenvalue Ae. There are two possibilities: 

1. Let |Ae| = £(F). Since the number of Jordan cells of any eigenvalue is equal 
to its geometric multiplicity and the sum of their matricial ranks is equal to 
its algebraic multiplicity (see for example [1]), and because (d) is true, we have 
A* = (Ae). It follows that [£(P)]-kAk

E = ([Ae/£(P)]*) and |[Ac/c;(P)]*| = 1. 
2. Let |Ae| 7- Z(P). Then |Ae/£(F)| < 1. It follows (see for example [1]) that any 

element of the matrix [€(P)]~kAE tends to zero as k —• oo. This completes the 
proof. • 

R e m a r k . Let P be an n x n nonnegative irreducile matrix such that £(P) = 0. 
Let w be a right eigenvector corresponding to the eigenvalue Q(P). It is obvious that 
there exists a norm v on Rn such that T„(P) = £(F) = 0 if and only if there exists 
a vector a G Rn such that P = waT. 
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T h e o r e m 3 .2 . Let P be an n x n nonnegative irreducible matrix, let w be a right 
eigenvector of P corresponding to the eigenvalue g(P). Then there exists a seminorm 
|| || on Rn such that the set {v G Rn\vTw = 0, ||i;|| 9-= 0} is non-empty and 

•UP K^ = an 
v£Rn IMI 

vTw=0 
IMI*o 

P r o o f . Let A G g(P) - {Q(P)} be an eigenvalue of P such tha t |A| = f ( F ) , 

and let z G Cn be a right eigenvector of P corresponding to the eigenvalue A. For 

all x G Rn let us put | |x | | = \xTz\. It is easily seen tha t || || is a seminorm on Rn. 

Assume tha t vTz = 0 for each v £ Rn, vTw — {). It follows tha t there exists a 

number c G C, c ^ 0 such tha t z = civ. Hence P2 = g(P)z, thus A = g(P). This 

contradicts A G <r(P) - {g(P)}. 

Finally, | | z T P | | = | ( * T P ) z | = \xT(Pz)\ = \xT(Xz)\ = |A| | x T * | = |A| | |x| | is t rue for 

each x G Rn. This completes the proof. • 

A c k n o w l e d g m e n t . I am very grateful to A. Lesanovsky for his constant interest 

in my work, valuable suggestions and help during the preparation of this paper. 

References 

1] R. A. Horn, Ch. R. Johnson: Matrix Analysis, Cambridge University Press, Cambridge, 
London, New York, New Rochelle, Melbourne and Sydney, 1985, (Russian translation 
P. Xopu, H. MOICOHCOH: MaTpHHHbift aHajiH3, MocKBa, Mnp, 1989). 

2] P. Kratochvtl, A. Lesanovsky: A contractive property in finite state Markov chains, 
Czechoslovak Math. J. 35(110) (1985), 491-509. 

3] T. S. Leong: A note on upper bounds on the maximum modulus of subdominant eigen­
values of nonnegative matrices, Linear Algebra Appl. 106 (1988), 1-4. 

4] A. Lesanovsky: Coefficients of ergodicity generated by non-symetrical vector norms, 
Czechoslovak Math. J. 40(115) (1990), 284-294. 

5] A. Rhodius: On almost scrambling stochastic matrices, Linear Algebra Appl. 126(1989), 
76-86. 

6] A. Rhodius: The maximal value for coefficients of ergodicity, Stochastic Process. Appl. 
20(1988), 141-145. 

7] U. G. Rothblum, C. P. Tan: Upper bounds on the maximum modulus of subdominant 
eigenvalues of nonnegative matrices, Linear Algebra Appl. 66 (1985), 45-86. 

8] E. Seneta: Coefficients of ergodicity: structure and applications, Adv. Appl. Prob. 11 
(1979), 576-590. 

9] E. Seneta: Explicit forms for ergodicity coefficients and spectrum localization, Linear 
Algebra Appl. 60 (1984), 187-197. 

[10] E. Seneta: Non-Negative Matrices and Markov Chains, Springer-Verlag, New York, 
Heidelberg and Berlin, 1981. 

[11] E. Seneta: Perturbation of the stationary distribution measured by ergodicity coeffi­
cients, Adv. Appl. Prob. 20 (1988), 228-230. 

[12] E. Seneta: Spectrum localization by ergodicity coefficients for stochastic matrices, Lin­
ear and Multilinear Algebra 14 (1983), 343-347. 

87 



[13] E. Seneta, C. P. Tan: The Euclidean and Frobenius ergodicity coefficients and spectrum 
localization, Bull. Malaysia Math. Soc. (7)1 (1984), 1-7. 

[14] C. P. Tan: A functional form for a particular coefficient of ergodicity, J. Appl. Probab. 
19 (1982), 858-863. 

[15] C. P. Tan: Coefficients of ergodicity with respect to vector norms, J. Appl Probab. 20 
(1983), 277-287. 

[16] C. P. Tan: Spectrum localization of an ergodic stochastic matrix, Bull. Inst. Math. 
Acad. Sinica 12 (1984), 147-151. 

[17] C. P. Tan: Spectrum localization using Holder norms, Houston J. Math. 12 (1986), 
441-449. 

Author's address: 586 01 Jihlava, Matky Bozi 11, Czechoslovakia. 

88 


		webmaster@dml.cz
	2020-07-03T08:38:54+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




