[1] Bourbaki, N.:
General topology. Elements of Mathematics (Berlin) (1998), Springer-Verlag, Berlin, translated from the French.
Zbl 0894.54001
[3] Glöckner, H.:
Infinite-dimensional Lie groups without completeness restrictions. Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups (Bȩdlewo, 2000), vol. 55, Banach Center Publ., 43–59, Polish Acad. Sci., Warsaw, 2002.
MR 1911979 |
Zbl 1020.58009
[4] Glöckner, H., Neeb, K.-H.: Infinite-dimensional Lie groups. Basic Theory and Main Examples, volume I, Springer-Verlag, 2009, in preparation.
[7] Keller, H. H.:
Differential calculus in locally convex spaces. Lecture Notes in Math., vol. 417, Springer-Verlag, Berlin, 1974.
MR 0440592 |
Zbl 0293.58001
[8] Kriegl, A., Michor, P. W.:
Smooth and continuous homotopies into convenient manifolds agree. unpublished preprint, 2002, available from
http://www.mat.univie.ac.at/$\sim $michor/.
[9] Kriegl, A., Michor, P. W.:
The Convenient Setting of Global Analysis. Math. Surveys Monogr., vol. 53, Amer. Math. Soc., 1997.
MR 1471480 |
Zbl 0889.58001
[12] Milnor, J.:
Remarks on infinite-dimensional Lie groups. Relativity, Groups and Topology, II (Les Houches, 1983), North-Holland, Amsterdam, 1984, pp. 1007–1057.
MR 0830252 |
Zbl 0594.22009
[13] Müller, C., Wockel, C.: Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group. Adv. Geom., to appear, 2009, arXiv:math/0604142.
[17] Wockel, C.:
Smooth extensions and spaces of smooth and holomorphic mappings. J. Geom. Symmetry Phys. 5 (2006), 118–126.
MR 2269885 |
Zbl 1108.58006