Previous |  Up |  Next

Article

Keywords:
conformally Einstein manifolds; positive Ricci curvature
Summary:
Let $(M^n,g)$ be a closed Riemannian manifold and $g_E$ the Euclidean metric. We show that for $m>1$, $\left(M^n \times \mathbf{R}^m, (g+g_E)\right)$ is not conformal to a positive Einstein manifold. Moreover, $\left(M^n \times \mathbf{R}^m, (g+g_E)\right)$ is not conformal to a Riemannian manifold of positive Ricci curvature, through a radial, integrable, smooth function, $\varphi \colon \mathbf{R^m} \rightarrow \mathbf{R^+}$, for $m>1$. These results are motivated by some recent questions on Yamabe constants.
References:
[1] Akutagawa, K., Florit, L., Petean, J.: On Yamabe constants of Riemannian products. Comm. Anal. Geom. 15 (5) (2007), 947–969, e-print math. DG/0603486. MR 2403191 | Zbl 1147.53032
[2] Besse, A.: Einstein manifolds. Ergeb. Math. Grenzgeb (3), 10, Springer, Berlin, 1987. MR 0867684 | Zbl 0613.53001
[3] Gover, R., Nurowski, P.: Obstructions to conformally Einstein metrics in n dimensions. J. Geom. Phys. 56 (2006), 450–484. DOI 10.1016/j.geomphys.2005.03.001 | MR 2171895 | Zbl 1098.53014
[4] Ilias, S.: Constantes explicites pour les inegalites de Sobolev sur les varietes riemannianes compactes. Ann. Inst. Fourier (Grenoble) 33 (2), 151–165. DOI 10.5802/aif.921 | MR 0699492
[5] Listing, M.: Conformal Einstein spaces in N-dimensions. Ann. Global Anal. Geom. 20 (2001), 183–197. DOI 10.1023/A:1011612830580 | MR 1857177 | Zbl 1024.53031
[6] Listing, M.: Conformal Einstein spaces in N-dimensions II. J. Geom. Phys. 56 (2006), 386–404. DOI 10.1016/j.geomphys.2005.02.008 | MR 2171892 | Zbl 1089.53030
[7] Moroianu, A., Ornea, L.: Conformally Einstein products and nearly Kähler manifolds. Ann. Global Anal. Geom. 22 (2008 (1)), 11–18, arXiv:math./0610599v3 [math.DG] (2007). MR 2369184
[8] Obata, M.: The conjectures on conformal transformations of Riemannian manifolds. J. Differential Geometry 6 (1971), 247–248. MR 0303464 | Zbl 0236.53042
[9] Petean, J.: Isoperimetric regions in spherical cones and Yamabe constants of $M\times S^1$. Geom. Dedicata (2009), to appear. MR 2576291 | Zbl 1188.53035
Partner of
EuDML logo