Article
Keywords:
conformally Einstein manifolds; positive Ricci curvature
Summary:
Let $(M^n,g)$ be a closed Riemannian manifold and $g_E$ the Euclidean metric. We show that for $m>1$, $\left(M^n \times \mathbf{R}^m, (g+g_E)\right)$ is not conformal to a positive Einstein manifold. Moreover, $\left(M^n \times \mathbf{R}^m, (g+g_E)\right)$ is not conformal to a Riemannian manifold of positive Ricci curvature, through a radial, integrable, smooth function, $\varphi \colon \mathbf{R^m} \rightarrow \mathbf{R^+}$, for $m>1$. These results are motivated by some recent questions on Yamabe constants.
References:
[1] Akutagawa, K., Florit, L., Petean, J.:
On Yamabe constants of Riemannian products. Comm. Anal. Geom. 15 (5) (2007), 947–969, e-print math. DG/0603486.
MR 2403191 |
Zbl 1147.53032
[4] Ilias, S.:
Constantes explicites pour les inegalites de Sobolev sur les varietes riemannianes compactes. Ann. Inst. Fourier (Grenoble) 33 (2), 151–165.
DOI 10.5802/aif.921 |
MR 0699492
[7] Moroianu, A., Ornea, L.:
Conformally Einstein products and nearly Kähler manifolds. Ann. Global Anal. Geom. 22 (2008 (1)), 11–18, arXiv:math./0610599v3 [math.DG] (2007).
MR 2369184
[8] Obata, M.:
The conjectures on conformal transformations of Riemannian manifolds. J. Differential Geometry 6 (1971), 247–248.
MR 0303464 |
Zbl 0236.53042
[9] Petean, J.:
Isoperimetric regions in spherical cones and Yamabe constants of $M\times S^1$. Geom. Dedicata (2009), to appear.
MR 2576291 |
Zbl 1188.53035