[2] L. Ambrosio, S. Mortola and V. Tortorelli:
Functionals with linear growth defined on vector valued BV functions. J. Math. Pures Appl. 70 (1991), 269–323.
MR 1113814
[3] G. Anzellotti and M. Giaquinta:
${BV}$ functions and traces. Rend. Sem. Mat. Univ. Padova 60 (1978), 1–21.
MR 0555952
[4] F. Atkinson, L. Peletier and J. Serrin:
Ground states for the prescribed mean curvature equation: the supercritical case. Nonlinear Diffusion Equations and Their Equilibrium States, Math. Sci. Res. Inst. Publ., vol. 12, 1988, pp. 51–74.
MR 0956058
[5] E. Bombieri and E. Giusti:
Local estimates for the gradient of non-parametric surfaces of prescribed mean curvature. Comm. Pure Appl. Math. 26 (1973), 381–394.
DOI 10.1002/cpa.3160260306 |
MR 0344977
[6] G. Buttazzo:
Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Research Notes in Mathematics, vol. 207, Longman Scientific & Technical, Harlow, 1989.
MR 1020296 |
Zbl 0669.49005
[8] S. Carl, V. K. Le and D. Motreanu:
Existence and comparison results for quasilinear evolution hemivariational inequalities. Electron. J. Differential Equations 57 (2004), 1–17.
MR 2047413
[9] S. Carl, V. K. Le and D. Motreanu:
The sub-supersolution method and extremal solutions for quasilinear hemivariational inequalities. Differential Integral Equations 17 (2004), 165–178.
MR 2035501
[10] S. Carl, V. K. Le and D. Motreanu:
Existence and comparison principles for general quasilinear variational-hemivariational inequalities. J. Math. Anal. Appl. 302 (2005), 65–83.
DOI 10.1016/j.jmaa.2004.08.011 |
MR 2106547
[11] M. Carriero, A. Leaci and E. Pascali:
On the semicontinuity and the relaxation for integrals with respect to the Lebesgue measure added to integrals with respect to a Radon measure. Ann. Mat. Pura Appl. 149 (1987), 1–21.
DOI 10.1007/BF01773922 |
MR 0932773
[12] M. Carriero, Dal Maso, A. Leaci and E. Pascali:
Relaxation of the nonparametric Plateau problem with an obstacle. J. Math. Pures Appl. 67 (1988), 359–396.
MR 0978576
[13] C. V. Coffman and W. K. Ziemer:
A prescribed mean curvature problem on domains without radial symmetry. SIAM J. Math. Anal. 22 (1991), 982–990.
DOI 10.1137/0522063 |
MR 1112060
[14] M. Conti and F. Gazzola:
Existence of ground states and free-boundary problems for the prescribed mean curvature equation. Adv. Differential Equations 7 (2002), 667–694.
MR 1894862
[16] I. Ekeland and R. Temam:
Analyse convexe et problèmes variationnels. Dunod, 1974.
MR 0463993
[17] L. C. Evans and R. F. Gariepy:
Measure theory and fine properties of functions. CRC Press, Boca Raton, 1992.
MR 1158660
[19] F. Gastaldi and F. Tomarelli:
Some remarks on nonlinear noncoercive variational inequalities. Boll. Un. Math. Ital. 7 (1987), 143–165.
MR 0895456
[22] C. Gerhardt:
Boundary value problems for surfaces of prescribed mean curvature. J. Math. Pures Appl. 58 (1979), 75–109.
MR 0533236 |
Zbl 0413.35024
[23] D. Gilbarg and N. Trudinger:
Elliptic partial differential equations of second order. Springer, Berlin, 1983.
MR 0737190
[24] E. Giusti:
Minimal surfaces and functions of bounded variations. Birkhäuser, Basel, 1984.
MR 0775682
[26] P. Habets and P. Omari:
Positive solutions of an indefinite prescribed mean curvature problem on a general domain. Adv. Nonlinear Studies 4 (2004), 1–13.
DOI 10.1515/ans-2004-0101 |
MR 2033556
[27] N. Ishimura:
Nonlinear eigenvalue problem associated with the generalized capillarity equation. J. Fac. Sci. Univ. Tokyo 37 (1990), 457–466.
MR 1071430 |
Zbl 0723.49033
[28] T. Kusahara and H. Usami:
A barrier method for quasilinear ordinary differential equations of the curvature type. Czech. Math. J. 50 (2000), 185–196.
DOI 10.1023/A:1022409808258 |
MR 1745471
[31] V. K. Le:
Some existence results on nontrivial solutions of the prescribed mean curvature equation. Adv. Nonlinear Studies 5 (2005), 133–161.
MR 2126734 |
Zbl 1158.53335
[32] V. K. Le and K. Schmitt:
Sub-supersolution theorems for quasilinear elliptic problems: A variational approach. Electron. J. Differential Equations (2004), 1–7.
MR 2108889
[33] J. L. Lions:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris, 1969.
MR 0259693 |
Zbl 0189.40603
[35] J. Mawhin and M. Willem:
Critical point theory and Hamiltonian systems. Springer Verlag, New York, 1989.
MR 0982267
[37] W. M. Ni and J. Serrin: Existence and non-existence theorems for quasilinear partial differential equations the anomalous case. Accad. Naz. Lincei, Atti dei Convegni 77 (1985), 231–257.
[38] W. M. Ni and J. Serrin:
Non-existence theorems for quasilinear partial differential equations. Rend. Circ. Math. Palermo 2 (1985), 171–185.
MR 0881397