[1] C. Bennett and K. Rudnick:
On Lorentz-Zygmund spaces. Dissertationes Math. 175 (1980), 1–72.
MR 0576995
[2] C. Bennett and R. Sharpley:
Interpolation of operators. Academic Press, New York, 1988.
MR 0928802
[3] N. H. Bingham, C. M. Goldie and J. L. Teugels:
Regular variation. Cambridge Univ. Press, Cambridge, 1987.
MR 0898871
[4] A. P. Calderón:
Spaces between $L^1$ and $L^{\infty }$ and the theorem of Marcinkiewicz. Studia Math. 26 (1966), 273–299.
MR 0203444
[5] D. E. Edmunds and W. D. Evans:
Hardy operators, function spaces and embeddings. Springer-Verlag, Berlin-Heidelberg, 2004.
MR 2091115
[6] D. E. Edmunds, P. Gurka and B. Opic:
Double exponential integrability of convolution operators in generalised Lorentz-Zygmund spaces. Indiana Univ. Math. J. 44 (1995), 19–43.
MR 1336431
[8] D. E. Edmunds and B. Opic:
Boundedness of fractional maximal operators between classical and weak-type Lorentz spaces. Dissertationes Math. 410 (2002), 1–53.
DOI 10.4064/dm410-0-1 |
MR 1952673
[11] A. Gogatishvili, B. Opic and W. Trebels:
Limiting reiteration for real interpolation with slowly varying functions. Math. Nachr. 278 (2005), 86–107.
DOI 10.1002/mana.200310228 |
MR 2111802
[14] B. Opic:
New characterizations of Lorentz spaces. Proc. Royal Soc. Edinburgh 133A (2003), 439–448.
MR 1969821 |
Zbl 1037.46026
[15] B. Opic:
On equivalent quasi-norms on Lorentz spaces. In Function Spaces, Differential Operators and Nonlinear Analysis. The Hans Triebel Aniversary Volume, D. Haroske, T. Runst, H.-J. Schmeisser (eds.), Birkhäuser Verlag, Basel/Switzerland, 2003, pp. 415–426.
MR 1984189 |
Zbl 1036.46022