[1] S. J. Bernau:
Unique representation of Archimedean lattice groups and normal Archimedean lattice rings. Proc. London Math. Soc. 15 (1965), 599–631.
MR 0182661
[2] A. Boccuto:
Riesz spaces, integration and sandwich theorems. Tatra Mountains Math. Publ. 3 (1993), 213–230.
MR 1278536 |
Zbl 0815.28007
[3] A. Boccuto and A. R. Sambucini:
On the De Giorgi-Letta integral with respect to means with values in Riesz spaces. Real Analysis Exchange 2 (1995/6), 793–810.
MR 1407297
[4] A. Boccuto and A. R. Sambucini:
Comparison between different types of abstract integrals in Riesz spaces. Rend. Circ. Mat. Palermo, Ser. II 46 (1997), 255–278.
DOI 10.1007/BF02977030 |
MR 1617345
[5] A. Boccuto and A. R. Sambucini:
The monotone integral with respect to Riesz space-valued capacities. Rend. Mat. (Roma) 16 (1996), 491–524.
MR 1422395
[6] J. K. Brooks and A. Martellotti:
On the De Giorgi-Letta integral in infinite dimensions. Atti Sem. Mat. Fis. Univ. Modena 4 (1992), 285–302.
MR 1179037
[8] E. De Giorgi and G. Letta: Une notion générale de convergence faible pour des fonctions croissantes d’ensemble. Ann. Scuola Sup. Pisa 33 (1977), 61–99.
[10] M. Duchoň, J. Haluška and B. Riečan: On the Choquet integral for Riesz space valued measure. Tatra Mountains Math. Publ. 19 (2000), 75–89.
[11] R. Dyckerhoff and K. Mosler:
Stochastic dominance with nonadditive probabilities. ZOR Methods and Models of Operations Research 37 (1993), 231–256.
DOI 10.1007/BF01415993 |
MR 1229945
[13] B. Fuchssteiner and W. Lusky:
Convex Cones. North-Holland Publ. Co., 1981.
MR 0640719
[14] I. Gilboa and D. Schmeidler:
Additive representation of non-additive measures and the Choquet integral. Ann. Oper. Research 52 (1994), 43–65.
DOI 10.1007/BF02032160 |
MR 1293559
[15] M. Grabisch, T. Murofushi and M. Sugeno (Eds.):
Fuzzy Measures and Integrals: Theory and Applications. Studies in Fuzziness and Soft Computing, 40, Heidelberg, Physica-Verlag, 2000.
MR 1767776
[19] T. Murofushi and M. Sugeno:
Choquet integral models and independence concepts in multiattribute utility theory. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 8 (2000), 385–415.
DOI 10.1142/S0218488500000289 |
MR 1781943
[23] J. Šipoš:
Integral with respect to a pre-measure. Math. Slov. 29 (1979), 141–155.
MR 0578286
[24] B. Z. Vulikh:
Introduction to the Theory of Partially Ordered Spaces. Wolters-Noordhoff Sci. Publ., Groningen, 1967.
MR 0224522 |
Zbl 0186.44601