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Abstract. A definition of “Šipoš integral” is given, similarly to [3], [5], [10], for real-
valued functions and with respect to Dedekind complete Riesz-space-valued “capacities”. A
comparison of Choquet and Šipoš-type integrals is given, and some fundamental properties
and some convergence theorems for the Šipoš integral are proved.
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1. Introduction

In [3] we introduced a “monotone-type” (that is, Choquet-type) integral for real-

valued functions, with respect to finitely additive positive set functions, with values

in a Dedekind complete Riesz space. A “Lebesgue-type” integral for such kind of

functions was investigated in [7]. In [4] we gave some comparison results for these

types of integrals.

In [10], a Choquet-type integral for real-valued functions with respect to Riesz-

space-valued “capacities”, that is, monotone set functions not necessarily finitely ad-

ditive, is investigated. The study of these integrals is motivated by several branches

of mathematics (for example, stochastic processes, see [16]) and has also some ap-

plications to probability theory and economics, for example for the study of the

fundamental properties of the so-called “utility functions” (see for instance [14], [19],

[21], [22]) and the study of “qualitative probabilities”, that is, set functions which

associate to an event not necessarily a real number (indeed, in reality it is often
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not so “natural” to represent the probability of a person about an event simply by

means of an element of [0, 1], see for example [12]). For related topics, see also the

bibliography [5] and [15].

In this paper we introduce a Šipoš-type, that is, “symmetric Choquet”-type in-

tegral, for real-valued functions with respect to Riesz-space-valued capacities, we

investigate the fundamental properties and prove some convergence theorems (for

real-valued capacities see [23] and [20], pp. 152–176).

2. Preliminaries

Let N, R, R+ , R− and R̃ be the sets of all natural, real, positive, negative and
extended real numbers, respectively.

A Riesz space R is said to be Dedekind complete if every nonempty subset of R,

bounded from above, has supremum in R.

Throughout this paper we always suppose that R is a Dedekind complete Riesz

space. In some suitable cases we add to R two extra element which we call +∞ and

−∞, extending the ordering and operations. They have the same role as the usual

+∞ and −∞ with the real numbers (see also [2], [13]). By the symbol R we denote

the set R ∪ {+∞}∪ {−∞}.

Definition 2.1. Given an element r ∈ R, we define r+ ≡ r ∨ 0, r− ≡ (−r) ∨ 0,

|r| ≡ r ∨ (−r).

Definition 2.2. A sequence (pn)n is called an (o)-sequence if pn ↓ 0, that is, if it

is decreasing and inf
n

pn = 0. We say that a sequence (rn)n is (o)-convergent (order

convergent) to r if there exists an (o)-sequence (pn)n ∈ R such that |rn − r| 6 pn

∀n ∈ N, and in this case we write (o) lim
n

rn = r.

Definition 2.3. A directed net (rα)α∈Ξ is called an (o)-net if rα ↓ 0, that is, if it

is decreasing and inf
α∈Ξ

rα = 0. We say that the directed net (rα)α∈Ξ is (o)-convergent

to r if

(o) lim sup
α

rα ≡ inf
α

[sup
β>α

rβ ] = (o) lim inf
α

rα ≡ sup
α

[ inf
β>α

rβ ] = r,

and in this case we write (o) lim
α∈Ξ

rα = r.
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3. The symmetric Choquet integral for capacities

We begin with recalling the Choquet integral, introduced in [10], and we introduce

and investigate the Šipoš (that is, the symmetric Choquet) integral for (extended)

real-valued functions with respect to Riesz-space-valued capacities.

Definition 3.1. Let X be any nonempty set, and let A ⊂ P(X) be a σ-algebra

(we suppose this for the sake of simplicity, though several results remain true if

we consider more general structures). We say that a set function P : A → R is a

capacity if P (∅) = 0 and P (A) 6 P (B) whenever A, B ∈ A , A ⊂ B; P is said to be

submodular if

A, B ∈ A =⇒ P (A ∪ B) + P (A ∩ B) 6 P (A) + P (B);

supermodular, if

A, B ∈ A =⇒ P (A ∪ B) + P (A ∩ B) > P (A) + P (B);

subadditive, if

A, B ∈ A =⇒ P (A ∪ B) 6 P (A) + P (B);

superadditive, if

A, B ∈ A =⇒ P (A ∪ B) > P (A) + P (B).

An R-valued capacity P is said to be continuous from below if for every increasing

sequence (En)n of elements of A we have

P

( ∞
⋃

n=1

En

)

= (o) lim
n

P (En) = sup
n

P (En);

continuous from above, if for every decreasing sequence (En)n of elements of A we

have

P

( ∞
⋂

n=1

En

)

= (o) lim
n

P (En) = inf
n

P (En);

continuous, if it is continuous both from below and from above.

A function P : A → R is called a mean (or a finitely additive set function) if

P (A) > 0 ∀A ∈ A and P (A ∪ B) = P (A) + P (B) whenever A ∩ B = ∅. It is easy

to check that every mean is a capacity, but the converse is in general not true. We

say that a set function P is a measure or that P is σ-additive if it is a continuous

mean. Similarly to [3], given a function f : X → R̃ and a capacity P , for all t ∈ R
set Σf

t (Σt) ≡ {x ∈ X : f(x) > t}; and, for every t ∈ R, let uf (t) = u(t) ≡ P (Σt).

We say that a function f : X → R̃ is measurable if Σf
t ∈ A , ∀ t ∈ R.

We now recall a Riemann-type integral for functions defined in an interval of the

real line and taking values in a Dedekind complete Riesz space (see also [3], [4]).
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Definition 3.2. Given an interval [a, b] ⊂ R, we call any finite set {x0, x1, . . . ,

xn} ⊂ [a, b] where x0 = a, xn = b and xi < xi+1 ∀ i = 0, . . . , n− 1 a division of [a, b].

We call the quantity δ(D) ≡
n−1
max
i=0

(xi+1 − xi) the mesh of D. We write D1 > D2 if

δ(D1) 6 δ(D2). A function u : [a, b] → R is said to be Riemann integrable if there

exists an element I ∈ R and an (o)-sequence (pj)j such that

sup
δ(D)6 1

j

∣

∣

∣

∣

n−1
∑

i=0

u(zi)(xi+1 − xi) − I

∣

∣

∣

∣

6 pj ∀ zi ∈ [xi, xi+1] (i = 0, . . . , n − 1),

and we write
∫ b

a
u(t) dt ≡ I.

The quantity
n−1
∑

i=0

u(zi)(xi+1 − xi) is called the Riemann sum of u associated with

the division {x0, x1, . . . , xn} with respect to the points zi ∈ [xi, xi+1], i = 0, . . . , n−1.

We note that, similarly to the classical case, it is easy to check that every monotone

function u : [a, b] → R is Riemann integrable.

We now introduce the Choquet integral for nonnegative functions with respect to

Riesz space-valued capacities (see also [5], [10]).

Definition 3.3. A measurable nonnegative function f ∈ R̃X is said to be

Choquet integrable if the quantity

∫ +∞

0

u(t) dt ≡ sup
a>0

∫ a

0

u(t) dt = (o) lim
a→+∞

∫ a

0

u(t) dt

exists in R where u(t) = P (Σt), t > 0. If f is Choquet integrable, we denote its

integral by the symbol (C)
∫

X
f dP .

We now introduce the Šipoš integral, that is, the symmetric Choquet integral, for

extended real-valued functions with respect to Riesz space-valued capacities. We

begin with

Definitions 3.4. A measurable function f : X → R is said to be simple if its
range is finite.

Let F be the family of all finite subsets of R which contain zero. Given F ∈ F

and a ∈ R, set
F + a ≡ {d ∈ R : d = b + a, with b ∈ F}

and

aF ≡ {d ∈ R : d = ab, with b ∈ F}.
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Let now F ∈ F , F = {bk, bk−1, . . . , b1, b0, a0, a1, . . . , an}, where bk < bk−1 < . . . <

b1 < b0 = 0 = a0 < a1 < . . . < an, and let f be a measurable function. As in [20],

p. 153, set

fF =

n
∑

i=1

(ai − ai−1)χAi
+

k
∑

j=1

(bj − bj−1)χBj
,

where

(1)
Ai = {x ∈ X : f(x) > ai}, i = 0, 1, . . . , n;

Bj = {x ∈ X : f(x) 6 bj}, j = 0, 1, . . . , k.

If P is anR-valued capacity, we define the integral sum (with respect to P ) associated

with f and F as follows:

SF (f) =

n
∑

i=1

(ai − ai−1)P (Ai) +

k
∑

j=1

(bj − bj−1)P (Bj)

(where the Ai’s and the Bj ’s are as in (1)) if the right-hand side contains no expression

of the type +∞− ∞; moreover, we put by convention S{0}(f) = 0. We note that

the set F is directed. We say that f : X → R̃ (not necessarily positive) is Šipoš
integrable ((S)-integrable) if the limit

(2) (o) lim
F∈F

SF (f)

exists in R and in this case we denote it by the symbol (S)
∫

X
f dP . If the limit in

(2) is +∞ or −∞, we write

(S)

∫

X

f dP = +∞

or

(S)

∫

X

f dP = −∞,

respectively, though f is, of course, not (S)-integrable. Furthermore, given a set

A ⊂ X , A ∈ A , we say that f is (S)-integrable on A if fχA is (S)-integrable, and in

this case we put, by definition,

(3) (S)

∫

A

f dP ≡ (S)

∫

X

fχA dP.
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Proposition 3.5. Let f : X → R̃ be a measurable function. The following
assertions hold:

a) If f > 0 and F ∋ F1 ⊂ F2 ∈ F , then SF1
(f) 6 SF2

(f).

b) If f > 0, then (S)
∫

X
f dP exists in R ∪ {+∞} and (S)

∫

X
f dP > 0. Moreover,

in this case we have

(S)

∫

X

f dP = sup
F∈F

SF (f).

c) (S)
∫

X
· dP is a monotone functional.

d) If (S)
∫

X
f dP exists in R, then for every c ∈ R we have

(S)

∫

X

(cf) dP = c · (S)

∫

X

f dP.

P r o o f. The proof is similar to the one of Lemma 7.3 (ii), p. 156, and Theo-

rem 7.10 (i)–(iii), p. 155, of [20]. �

We now prove that, for measurable non negative extended real-valued functions,

the Šipoš and Choquet integrals do coincide.

Theorem 3.6. Let f : X → R̃ be a nonnegative measurable function. Then f is

Šipoš integrable if and only if it is Choquet integrable, and in this case

(S)

∫

X

f dP = (C)

∫

X

f dP.

P r o o f. First of all we prove that every nonnegative bounded measurable func-

tion f is Šipoš integrable.

Let K ∈ N be such that f(x) 6 K for all x ∈ X . Then the function u(t) ≡ P ({x ∈

X : f(x) > t}) vanishes on [K, +∞[, and therefore u is Riemann integrable in [0, K]

and we get

(4) R ∋

∫ K

0

u(t) dt =

∫ +∞

0

u(t) dt = (C)

∫

X

f dP.

Thus f is Choquet integrable. Moreover, thanks also to Proposition 3.5 a), it is easy

to check that 0 6 SF (f) 6 KP (X) for every F ∈ F . From this and Proposition

3.5 b) it follows that f is Šipoš integrable too and

(S)

∫

X

f dP 6 KP (X).
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Now, given F ∈ F , let Σ(u, F, K) be the Riemann sum of u associated with that

division of [0, K] whose elements, which we denote by αj , j = 1, . . . , s, are the points

of F belonging to [0, K] and the points 0 andK, with respect to the (right end-)points

αj ’s themselves, j = 1, . . . , s. We have

0 6

∣

∣

∣

∣

(S)

∫

X

f dP − (C)

∫

X

f dP

∣

∣

∣

∣

=

∣

∣

∣

∣

(S)

∫

X

f dP −

∫ K

0

u(t) dt

∣

∣

∣

∣

= (o) lim sup
F∈F

∣

∣

∣

∣

(S)

∫

X

f dP − SF (f) + SF (f) −

∫ K

0

u(t) dt

∣

∣

∣

∣

6 (o) lim sup
F∈F

∣

∣

∣

∣

(S)

∫

X

f dP − SF (f)

∣

∣

∣

∣

+ (o) lim sup
F∈F

∣

∣

∣

∣

Σ(u, F, K) −

∫ K

0

u(t) dt

∣

∣

∣

∣

= (o) lim sup
F∈F

∣

∣

∣

∣

Σ(u, F, K) −

∫ K

0

u(t) dt

∣

∣

∣

∣

= 0.

From this the assertion follows, at least when f is bounded and measurable.

If f is not bounded, then we have (finite or +∞)

(S)

∫

X

f dP = sup
F∈F

SF (f)(5)

= sup
K∈N[ sup

F∈F

SF (f ∧ K)]

= sup
K∈N(S)

∫

X

(f ∧ K) dP = sup
K∈N(C)

∫

X

(f ∧ K) dP

= sup
K∈N∫ K

0

P ({x ∈ X : f(x) > t}) dt

=

∫ +∞

0

P ({x ∈ X : f(x) > t}) dt = (C)

∫

X

f dP.

This concludes the proof. �

Proceeding in a way analogous to (5), it is possible to prove
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Proposition 3.7. A nonnegative measurable extended real-valued function f is

(S)-integrable if and only if one of the following three elements

(o) lim
K→+∞

(S)

∫

X

(f ∧ K) dP,

sup
K∈R,K>0

(S)

∫

X

(f ∧ K) dP,

sup
K∈N(S)

∫

X

(f ∧ K) dP

exists in R and then these quantities coincide with (S)
∫

X
f dP , not only if they

belong to R, but also if they are equal to +∞.

We now prove

Theorem 3.8. If f is a measurable extended real-valued function (not necessarily

nonnegative) and a ∈ R, a > 0, then

(6) (S)

∫

X

f dP = (S)

∫

X

(f ∧ a) dP + (S)

∫

X

(f − f ∧ a) dP

(finite or +∞), if one of the right-hand side expressions belongs to R.

P r o o f. We prove the theorem in the case (S)
∫

X
(f ∧ a) dP ∈ R: the proof in

the other case is analogous.

By Proposition 3.5 b), the quantity (S)
∫

X
(f − f ∧ a) dP exists in R∪{+∞}. We

consider first the case (S)
∫

X
(f − f ∧ a) dP ∈ R. By definition of the Šipoš integral

and the (o)-convergence of nets, there exist two (o)-nets (pF )F∈F and (qF )F∈F such

that

(7)

∣

∣

∣

∣

SF (f ∧ a) − (S)

∫

X

(f ∧ a) dP

∣

∣

∣

∣

6 pF ∀F ∈ F

and

(8)

∣

∣

∣

∣

SF (f − f ∧ a) − (S)

∫

X

(f − f ∧ a) dP

∣

∣

∣

∣

6 qF ∀F ∈ F .

Fix arbitrarily F1, F2 ∈ F , let F0 ≡ F1∪(F2 +a) and pick F ⊃ F0. Since F −a ⊃ F2,

we get
∣

∣

∣

∣

SF (f) − (S)

∫

X

(f − f ∧ a) dP − (S)

∫

X

(f ∧ a) dP

∣

∣

∣

∣

6

∣

∣

∣

∣

SF−a(f − f ∧ a) − (S)

∫

X

(f − f ∧ a) dP

∣

∣

∣

∣

+

∣

∣

∣

∣

SF (f ∧ a) − (S)

∫

X

(f ∧ a) dP

∣

∣

∣

∣

6 qF1
+ pF2

.
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From (9), thanks also to Proposition 3.5 a), it follows that

(10) (o) lim sup
F∈F

∣

∣

∣

∣

SF (f) − (S)

∫

X

(f − f ∧ a) dP − (S)

∫

X

(f ∧ a) dP

∣

∣

∣

∣

= 0.

From (10) it follows that (S)
∫

X
f dP exists in R and formula (6) holds true. In the

case

(S)

∫

X

(f − f ∧ a) dP = +∞,

proceeding with the analogous notation as above, we get

SF (f) = SF (f ∧ a) + SF−a(f − f ∧ a) > SF (f ∧ a) +

∫

X

(f ∧ a) dP − p{0},

and taking the supremum in (11) we obtain that (S)
∫

X
f dP = +∞ if (S)

∫

X
(f −

f ∧ a) dP = +∞, and hence (6) holds with the value +∞. This concludes the proof.

�

Theorem 3.9. Let f : X → R̃ be a measurable function. If (S)
∫

X
f+ dP or

(S)
∫

X
f− dP belongs to R, then (S)

∫

X
f dP belongs to R too and

(12) (S)

∫

X

f dP = (S)

∫

X

f+ dP − (S)

∫

X

f− dP.

Moreover, if f is (S)-integrable, then (12) holds true, and f+, f− are (S)-integrable

too.

P r o o f. The first part is an easy consequence of Theorem 3.8 (see also [20],

p. 159).

We now turn to the second part. In order to prove it, it is sufficient to prove that

(S)
∫

X
f+ dP and (S)

∫

X
f− dP belong to R. We now report in detail only the proof

of the first property. Since f is (S)-integrable, there exists an (o)-net (pF )F∈F such

that

(13)

∣

∣

∣

∣

SF (f) − (S)

∫

X

f dP

∣

∣

∣

∣

6 pF ∀F ∈ F .

Fix now arbitrarily F0 ∈ F and choose F ∈ F with F ⊃ F0 and F ∩R− = F0 ∩R− .

Proceeding analogously to [20], pp. 159–160, we get

(14) 0 6 SF∩R+(f+) = SF (f+) = S−F (f−) + SF (f)

= S−F0
(f−) + SF (f) 6 S−F0

(f−) + (S)

∫

X

f dP + p{0}.
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We have

(15) (S)

∫

X

f+ dP = sup
F∈F

SF (f+) = sup
F∈F

SF∩R+(f+).

By virtue of Proposition 3.5 a), the supremum in (15) is equal to the supremum with

respect to those elements F of F which contain F0 and such that F ∩R− = F0∩R− .

Since F0 was fixed, it follows from (14) and (15) that (S)
∫

X
f+ dP ∈ R. �

Proposition 3.10. Let X ⊃ A1 ⊃ A2 ⊃ . . . ⊃ An ∈ A . Let ci be positive real

numbers and fi ≡ ciχAi
, i = 1, 2, . . . , n. Then

(S)

∫

X

( n
∑

i=1

fi

)

dP =
n

∑

i=1

ciP (Ai).

P r o o f. The proof is similar to the one of [8], Proposition 2.4, p. 65, and takes

into account the equivalence between the Choquet and Šipoš integrals for nonnegative

measurable functions. �

The proof of the following proposition is straightforward.

Proposition 3.11. If f is measurable and |f | is (S)-integrable, then f is (S)-

integrable too. Moreover, if f is measurable, g is (S)-integrable and |f | 6 g, then f

is (S)-integrable too.

From now on, given a nonnegative measurable function f : X → R̃, let Sf be the

set of all simple functions g such that 0 6 g(x) 6 f(x) ∀x ∈ X .

Proposition 3.12. If f > 0 is (S)-integrable, then

(S)

∫

X

f dP = sup
g∈Sf

(S)

∫

X

g dP.

Conversely, if f > 0 is measurable and such that the quantity sup
g∈Sf

(S)
∫

X
g dP exists

in R, then f is (S)-integrable and

(S)

∫

X

f dP = sup
g∈Sf

(S)

∫

X

g dP.

Furthermore, if f is nonnegative and (S)-integrable, then there exists a sequence of

simple functions (gn)n such that

(S)

∫

X

f dP = sup
n

(S)

∫

X

gn dP.
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P r o o f. The proof of the first two parts is similar to the one of [8], Proposition

2.5, p. 65. The proof of the last part, in the case of a bounded f , is similar to the one

of [3], Proposition 3.12, p. 798, and takes into account Proposition 3.10; the general

case follows from the case of a bounded function and Proposition 3.7. �

Proposition 3.13. If f is (S)-integrable, then

(o) lim
t→+∞

P ({x ∈ X : |f(x)| > t}) = 0 = P ({x ∈ X : |f(x)| = +∞}).

P r o o f. The proof is similar to the one of [3], Proposition 3.10, p. 797, applied

to f+ and f−, which are integrable by virtue of Theorem 3.9. �

We now show absolute continuity of the Šipoš integral. In order to do this, first

we state a preliminary lemma (for the case R = R, see [20], Lemma 7.5. (i), p. 163).
Lemma 3.14. If f is a nonnegative (S)-integrable function, then

(o) lim
A→+∞

(S)

∫

X

(f − f ∧ A) dP = 0.

P r o o f. Fix arbitrarily F ∈ F , F = {bk, bk−1, . . . , b1, b0 = 0 = a0, a1, . . . , an},

where the elements of F are ordered in the increasing order, and let

fF =

n
∑

i=1

(ai − ai−1)χAi
.

For A ∈ R+ large enough we get

(16) fF 6 f ∧ A 6 f.

Now, given F ∈ F , let A satisfy condition (16). From (16) and the monotonicity of

the Šipoš integral we have

(17) SF (f) = (S)

∫

X

fF dP 6 (S)

∫

X

(f ∧ A) dP 6 (S)

∫

X

f dP.

Moreover, by virtue of Theorem 3.8 and (17), we get

(18) (S)

∫

X

(f − f ∧A) dP = (S)

∫

X

f dP − (S)

∫

X

(f ∧A) dP 6 (S)

∫

X

f dP −SF (f).

From (18) and the Šipoš integrability of f it follows that

(19) 0 6 (o) lim sup
A∈R+

[

(S)

∫

X

(f − f ∧ A) dP

]

6 (o) lim sup
F∈F

[

(S)

∫

X

f dP − SF (f)

]

= 0.

Thus the assertion follows. �
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The next theorem is a consequence of Lemma 3.14

Theorem 3.15. If f : X → R̃ is (S)-integrable, then the integral (S)
∫

·
f dP is

absolutely continuous, that is

(o) lim
n

∫

An

fdP = 0

whenever (An)n is a sequence in A such that (o) lim
n

P (An) = 0.

P r o o f. The proof is similar to the one of [3], Proposition 3.17, p. 800, thanks

to Lemma 3.14. �

4. Convergence theorems

In this section we prove some convergence theorems for the Šipoš integral with

respect to Riesz space-valued capacities, not necessarily finitely additive.

Throughout this section, we always assume that X is any nonempty set, A ⊂

P(X) is a σ-algebra, R is a Dedekind complete Riesz space, and P : A → R is a

continuous capacity.

We begin with the following theorem (for the real case, see [20], Theorem 7.13,

pp. 162–163):

Theorem 4.1. Let c ∈ R, c > 0 (fn : X → R̃)n be an increasing sequence of

nonnegative (S)-integrable functions with (S)
∫

X
fndP 6 c for every n ∈ N, and let

f ≡ sup
n

fn be the pointwise supremum.

Then f is (S)-integrable, (S)
∫

X
f dP 6 c and

(S)

∫

X

f dP = sup
n

(S)

∫

X

fn dP = (o) lim
n

(S)

∫

X

fn dP.

P r o o f. Fix arbitrarily ε > 0 and F ∈ F , F = {a0, a1, . . . , an}, where 0 = a0 <

a1 < . . . < an. We choose δ such that

0 < 2δ < min{(aj − aj−1) : j = 1, 2, . . . , k}

and
δ

a1 − δ
< ε
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such a δ does exist. Proceeding analogously to the proof of Theorem 7.13 of [20], we

get

SF (f) 6 (o) lim
n

(S)

∫

X

fn dP +
δ

a1 − δ
(o) lim

n
(S)

∫

X

fn dP

6 (o) lim
n

(S)

∫

X

fn dP + εc,

and hence

(S)

∫

X

f dP = sup
F∈F

SF (f) 6 (o) lim
n

(S)

∫

X

fn dP + εc.

Due to arbitrariness of ε ∈ R+ , (20) yields

(S)

∫

X

f dP 6 (o) lim
n

(S)

∫

X

fn dP.

The converse inequality follows easily from the monotonicity of the integral

(S)
∫

X
f dP . �

We have the following consequences of Theorem 4.1:

Corollary 4.2. If (αn)n is any decreasing sequence of positive real numbers with

inf
n

αn = 0, then

(o) lim
n→+∞

(S)

∫

X

(f ∧ αn) dP = 0.

P r o o f. The proof is similar to the one of Lemma 7.5 (ii) of [20], p. 163. �

Corollary 4.3 (Fatou’s Lemma). Let c ∈ R, c > 0 (fn : X → R̃)n be any se-

quence of nonnegative (S)-integrable functions with (S)
∫

X
fndP 6 c for every n ∈ N,

and f ≡ lim inf
n

fn.

Then

(S)

∫

X

f dP 6 (o) lim inf
n

(S)

∫

X

fn dP.

P r o o f. First of all, we note that f is (S)-integrable, thanks to Theorem 4.1.

For each n ∈ N, let hn = inf
i>n

fi. Then 0 6 hn ↑ f and

(S)

∫

X

hn dP 6 (S)

∫

X

f dP ∀n ∈ N.
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Again by Theorem 4.1, we get

(S)

∫

X

f dP = (o) lim
n

(S)

∫

X

hn dP

= (o) lim inf
n

(S)

∫

X

hn dP 6 (o) lim inf
n

(S)

∫

X

fn dP.

This concludes the proof. �

We now recall the following fundamental representation theorem for Riesz spaces

([1], [18], [24]).

Theorem 4.4. Given a Dedekind complete Riesz space R, there exists a com-

pact Stonian topological space Ω, unique up to homeomorphisms, such that R

can be embedded as a solid subspace of C∞(Ω) = {f ∈ R̃Ω : f is continuous, and

{ω : |f(ω)| = +∞} is nowhere dense in Ω}. Moreover, if (aλ)λ∈Λ is any family such

that aλ ∈ R ∀λ and a = inf
λ

aλ ∈ R (where the infimum is taken with respect to R),

then a = inf
λ

aλ with respect to C∞(Ω), and the set {ω ∈ Ω: (inf
λ

aλ)(ω) 6= inf
λ

aλ(ω)}

is meager in Ω.

We now turn to another version of the monotone convergence theorem. In order

to prove it, we first establish

Lemma 4.5. Let [a, b] ⊂ R, un : [a, b] → R let (n ∈ N ∪ {0}) be monotone

decreasing functions, such that

un(t) = inf
s<t

un(s) ∀ t ∈ (a, b], ∀n ∈ N ∪ {0};(21)

un(t) > un+1(t) ∀ t ∈ [a, b], ∀n > 1;(22)

inf
n

un(t) = u0(t) ∀ t ∈ [a, b].(23)

Then
∫ b

a

u0(t) dt = inf
n>1

∫ b

a

un(t) dt = (o) lim
n→+∞

∫ b

a

un(t) dt.

P r o o f. First of all, we observe that for every n ∈ N∪{0} the integral ∫ b

a
un(t) dt

is the limit, for l → +∞, of the Riemann sums of the type

(24)
2l

∑

i=1

(a
(l)
i − a

(l)
i−1)un(a

(l)
i ),

where the a
(l)
i ’s, l ∈ N, i = 1, 2, . . . , 2l, are taken in such a way that a

(l)
0 = a, a(l)

2l = b,

and the division generated by the a
(l)
i ’s divides the interval [a, b] in 2l equal parts.
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Denote by Y the set of points of all these divisions and let Q be the union of Y and

the rational numbers contained in [a, b]; we note that Q is a countable dense subset

of [a, b].

Let now Ω be as in Theorem 4.4. We note that there exists a meager set N∗ ⊂ Ω

such that, for all ω 6∈ N∗, we have

(25)

[

inf
n

[
∫ b

a

un(t) dt

]

(ω)

]

=

[

inf
n

[
∫ b

a

un(t) dt

]]

(ω),

and for each ω 6∈ N∗ and s ∈ Q we get

un(s)(ω) > un+1(s)(ω) ∀n > 1,

lim
n→+∞

un(s)(ω) = inf
n>1

un(s)(ω) = u0(s)(ω),

and all quantities involved are real numbers. Now, for all s ∈ [a, b] ∩ Q, ∀ω 6∈ N∗

and ∀n ∈ N ∪ {0}, set

wn,ω(s) = un(s)(ω).

For each t ∈ [a, b], ω 6∈ N∗ and n ∈ N ∪ {0}, put

(26) wn,ω(t) = inf
s6t,s∈Q

wn,ω(s).

By (26) and since the wn,ω ’s are decreasing, their integrals can be evaluated analo-

gously to in (24), and thus we get, ∀n ∈ N ∪ {0} and ∀ω 6∈ N∗,

(27)

∫ b

a

wn,ω(t) dt =

[
∫ b

a

un(t) dt

]

(ω).

We note that

(28) wn,ω(s) ↓ w0,ω(s) ∀ω 6∈ N∗, ∀ s ∈ [a, b] ∩ Q, s > 0.

Furthermore, ∀ω 6∈ N∗ and t > 0, t ∈ [a, b], by “interchanging the infima involved”

we get

inf
n

wn,ω(t) = inf
n

[

inf
s,t∈[a,b],s6t,s∈Q

wn,ω(s)
]

= inf
s,t∈[a,b],s6t,s∈Q

[

inf
n

wn,ω(s)
]

(29)

= inf
s,t∈[a,b],s6t,s∈Q

[w0,ω(s)] = w0,ω(t),

and thus

(30) wn,ω(t) ↓ w0,ω(t) ∀ω 6∈ N∗, ∀ t ∈ [a, b].
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From (25), (27) and (30), and applying the classical (dominated) convergence theo-

rem for real-valued functions, we get, ∀ω 6∈ N∗:

[
∫ b

a

u0(t) dt

]

(ω) =

∫ b

a

w0,ω(t) dt = inf
n

[
∫ b

a

wn,ω(t) dt

]

(31)

= inf
n

[[
∫ b

a

un(t) dt

]

(ω)

]

=

[

inf
n

[
∫ b

a

un(t) dt

]]

(ω).

From this, since N∗ is meager and the complement of every meager subset of Ω is

dense in Ω, it follows that

∫ b

a

u0(t) dt = inf
n

∫ b

a

un(t) dt.

Thus we get the assertion. �

We now are in position to prove

Theorem 4.6. Let (fn : X → R̃)n be a decreasing sequence of nonnegative

(S)-integrable functions and let f = inf
n

fn be the pointwise infimum. Then f is

(S)-integrable and

(S)

∫

X

f dP = inf
n

(S)

∫

X

fn dP = (o) lim
n

(S)

∫

X

fn dP.

P r o o f. First of all, since 0 6 f 6 f1, it follows from Proposition 3.11 that f

is integrable. Moreover, we observe that, proceeding similarly as in the first half of

p. 164 of [20] and taking into account Lemma 3.14 we can suppose, without loss of

generality, that the functions fn and f are equibounded by a positive number A.

For each t > 0 and n ∈ N, n > 1, let un(t) = P ({x ∈ X : fn(x) > t}), and ∀ t > 0

let u0(t) = P ({x ∈ X : f(x) > t}).

Proceeding analogously to the proof of Theorem 3.6 we get

(32) (S)

∫

X

f dP =

∫ A

0

u0(t) dt

and

(33) (S)

∫

X

fn dP =

∫ A

0

un(t) dt ∀n > 1.
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Since P is a continuous capacity and fn ↓ f , the functions un, n ∈ N ∪ {0}, satisfy

conditions (21), (22) and (23). Applying Lemma 4.5 with [a, b] = [0, A] and using

(32) and (33), we conclude that

(S)

∫

X

f dP =

∫ A

0

u0(t) dt = inf
n>1

∫ b

a

un(t) dt

= (o) lim
n→+∞

∫ b

a

un(t) dt = inf
n

(S)

∫

X

fn dP = (o) lim
n

(S)

∫

X

fn dP,

which is the assertion. �

We now prove

Theorem 4.7. Let c ∈ R, let (fn)n be a sequence of (S)-integrable functions and

f a measurable function such that fn ↓ f and
∫

X

fn dP > c ∀n ∈ N.

Then f is (S)-integrable and

(S)

∫

X

f dP = (o) lim
n

(S)

∫

X

fn dP = inf
n

(S)

∫

X

fn dP.

P r o o f. Since fn ↓ f , we have f+
n ↓ f+ and f−

n ↑ f−. Further,

0 6 (S)

∫

X

f−
n dP = (S)

∫

X

f+
n dP − (S)

∫

X

fn dP

6 (S)

∫

X

f+
1 dP − (S)

∫

X

fn dP 6 (S)

∫

X

f+
1 dP − c,

and thus we get that the integrals (S)
∫

X
f−

n dP , n ∈ N, are bounded from above by
an element of R. By Theorem 4.1, f is Šipoš-integrable and

(34) (S)

∫

X

f− dP = (o) lim
n

(S)

∫

X

f−
n dP = sup

n
(S)

∫

X

f−
n dP.

Moreover, by Theorem 4.6, we get integrability of f+ and

(35) (S)

∫

X

f+ dP = (o) lim
n

(S)

∫

X

f+
n dP = inf

n
(S)

∫

X

f+
n dP.

Thus, from (34), (35) and Theorem 3.9 we obtain

(o) lim
n

(S)

∫

X

fn dP = (o) lim
n

(S)

∫

X

f+
n dP − (o) lim

n
(S)

∫

X

f−
n dP

= (S)

∫

X

f+ dP − (S)

∫

X

f− dP = (S)

∫

X

f dP,

which is the assertion. �
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The proof of the next theorem is similar to those of Theorem 4.7 and of Theo-

rem 7.15, p. 166 of [20], if we take into account that fn ↑ f implies f+
n ↑ f+ and

f−
n ↓ f−.

Theorem 4.8. Let c ∈ R, c > 0, let (fn)n be a sequence of (S)-integrable

functions and f a measurable function such that fn ↑ f and

∫

X

fn dP 6 c ∀n ∈ N.

Then f is (S)-integrable and

(S)

∫

X

f dP = (o) lim
n

(S)

∫

X

fn dP = sup
n

(S)

∫

X

fn dP.

We now state a version of the Lebesgue convergence dominated theorem, which

is a consequence of Theorems 4.7 and 4.8 and whose proof is similar to the one of

Theorem 7.16 of [20]:

Theorem 4.9. If (fn)n is a sequence of measurable functions which converges

pointwise to a measurable function f and if g is an (S)-integrable function with

|fn| 6 g ∀n ∈ N, then f is (S)-integrable and

(S)

∫

X

f dP = (o) lim
n

(S)

∫

X

fn dP.

5. The submodular theorems

In this section we prove some theorems for the Šipoš integral in the case when the

involved capacities are submodular.

Theorem 5.1. Let P : A → R be a submodular capacity and let f, g : X → R̃
be two nonnegative measurable functions. Then

(S)

∫

X

(f ∧ g) dP + (S)

∫

X

(f ∨ g) dP 6 (S)

∫

X

f dP + (S)

∫

X

g dP

(finite or +∞). Moreover, if f and g are integrable, then f∧g and f∨g are integrable

too.
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P r o o f. If (S)
∫

X
f dP = +∞ or (S)

∫

X
g dP = +∞ the assertion is trivial. Let

f and g be both (S)-integrable. (S)-integrability of f ∧ g follows immediately from

Proposition 3.11.

We now prove that f ∨ g is (S)-integrable. To this aim, pick arbitrarily F ∈ F

with F = {a0, a1, . . . , an}, where a0 = 0 < a1 < . . . < an. Set

Ai = {x : f(x) > ai}, Bi = {x : g(x) > ai}, i = 0, 1, . . . , n.

Proceeding analogously to the proof of Theorem 7.17 of [20], thanks to the submod-

ularity of P we get:

(36) SF (f ∧ g) + SF (f ∨ g) 6 SF (f) + SF (g) 6

∫

X

f dP +

∫

X

g dP.

From (36), taking into account the Dedekind completeness of R, we have

(o) lim
F∈F

[SF (f ∧ g) + SF (f ∨ g)](37)

= (o) lim
F∈F

[SF (f ∧ g)] + (o) lim
F∈F

[SF (f ∨ g)]

= sup
F∈F

[SF (f ∧ g)] + sup
F∈F

[SF (f ∨ g)] ∈ R.

From the (S)-integrability of the function f ∧ g and from (37) we get

(o) lim
F∈F

[SF (f ∨ g)] = sup
F∈F

[SF (f ∨ g)] ∈ R,

that is, the (S)-integrability of f ∨ g. Taking the order limits for F ∈ F , from (36)

and (37) we obtain:

(S)

∫

X

f dP + (S)

∫

X

g dP > (o) lim
F∈F

[SF (f ∧ g) + SF (f ∨ g)]

= (S)

∫

X

(f ∧ g) dP + (S)

∫

X

(f ∨ g) dP,

which is the assertion. �

Proceeding analogously to Theorem 5.1, it is possible to prove

Proposition 5.2. If f and g are nonnegative measurable functions and P is an

R-valued subadditive capacity, then

(S)

∫

X

(f ∨ g) dP 6 (S)

∫

X

f dP + (S)

∫

X

g dP.

(For the real case, see [20], Corollary 7.5, p. 168.)

We now state the submodular theorem (see also [5]).

307



Proposition 5.3. Let P : A → R be a submodular capacity and let f, g ∈ R̃X

be two nonnegative (S)-integrable functions. Then

(S)

∫

X

(f + g) dP 6 (S)

∫

X

f dP + (S)

∫

X

g dP.

Moreover, if f and g are (S)-integrable, then f + g is (S)-integrable too.

P r o o f. If either f or g is not (S)-integrable, then the assertion is trivial. If

both f and g are (S)-integrable, then, by virtue of the inequality 0 6 f +g 6 2(f ∨g)

and Proposition 3.11, we get that f + g is (S)-integrable. For the remaining part,

see [5]. �

Proceeding analogously to Corollary 7.6 of [20], p. 173, it is possible to prove

Theorem 5.4. Let f be a measurable function and P an R-valued submodular

capacity. Then f is (S)-integrable if and only if |f | is (S)-integrable.

Remark 5.5. We observe that, in general, the hypothesis of submodularity of P

cannot be dropped, not even in the case R = R: indeed, if P is a real-valued not

submodular capacity, there exist some (S)-integrable functions f (with respect to P )

such that |f | is not (S)-integrable (see [20], Example 3.16, p. 161).

Similarly to [20], Corollary 7.7, p. 174 and Corollary 7.8, p. 175, it is easy to prove

the following two theorems:

Theorem 5.6. If P : A → R is a mean and f, g are (S)-integrable, then

(S)

∫

X

(f + g) dP = (S)

∫

X

f dP + (S)

∫

X

g dP.

Theorem 5.7. If P : A → R is a capacity and f , g are (S)-integrable and

comonotonic, then

(S)

∫

X

(f + g) dP = (S)

∫

X

f dP + (S)

∫

X

g dP.
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