[1] T. Asano, T. Nishizeki and T. Watanabe:
An upper bound on the length of a Hamiltonian walk of a maximal planar graph. J. Graph Theory 4 (1980), 315–336.
DOI 10.1002/jgt.3190040310 |
MR 0584677
[2] T. Asano, T. Nishizeki and T. Watanabe:
An approximation algorithm for the Hamiltonian walk problems on maximal planar graphs. Discrete Appl. Math. 5 (1983), 211–222.
DOI 10.1016/0166-218X(83)90042-2 |
MR 0683513
[4] G. Chartrand, T. Thomas, V. Saenpholphat and P. Zhang:
On the Hamiltonian number of a graph. Congr. Numer. 165 (2003), 51–64.
MR 2049121
[5] G. Chartrand, T. Thomas, V. Saenpholphat and P. Zhang:
A new look at Hamiltonian walks. Bull. Inst. Combin. Appl. 42 (2004), 37–52.
MR 2082480
[6] G. Chartrand and P. Zhang: Introduction to Graph Theory. McGraw-Hill, Boston, 2005.
[7] S. E. Goodman and S. T. Hedetniemi:
On Hamiltonian walks in graphs. Congr. Numer. (1973), 335–342.
MR 0357223
[9] L. Nebeský:
A generalization of Hamiltonian cycles for trees. Czech. Math. J. 26 (1976), 596–603.
MR 0543670
[10] F. Okamoto, V. Saenpholphat and P. Zhang:
Measures of traceability in graphs. Math. Bohem. 131 (2006), 63–83.
MR 2211004
[11] V. Saenpholphat and P. Zhang:
Graphs with prescribed order and Hamiltonian number. Congr. Numer. 175 (2005), 161–173.
MR 2198624