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Abstract. For a nontrivial connected graph G of order n and a linear ordering s :

v1, v2, . . . , vn of vertices of G, define d(s) =
n−1∑

i=1

d(vi, vi+1). The traceable number t(G)

of a graph G is t(G) = min{d(s)} and the upper traceable number t+(G) of G is t+(G) =
max{d(s)}, where the minimum and maximum are taken over all linear orderings s of
vertices of G. We study upper traceable numbers of several classes of graphs and the
relationship between the traceable number and upper traceable number of a graph. All
connected graphs G for which t+(G) − t(G) = 1 are characterized and a formula for the
upper traceable number of a tree is established.
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1. Introduction and some known results

We refer to the book [6] for graph-theoretical notation and terminology not de-

scribed in this paper. For a connected graph G of order n > 3 and a cyclic ordering

s : v1, v2, . . . , vn, vn+1 = v1 of vertices of G, the number d(s) is defined as

d(s) =

n
∑

i=1

d(vi, vi+1),

where d(vi, vi+1) is the distance between vi and vi+1. Therefore, d(s) > n for each

cyclic ordering s of vertices of G. The Hamiltonian number h(G) of G is defined in

[5] by

h(G) = min{d(s)},
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where the minimum is taken over all cyclic orderings s of the vertices of G. Therefore,

h(G) = n if and only if G is Hamiltonian. In [7], [8] Goodman and Hedetniemi

introduced the concept of a Hamiltonian walk in a connected graph G, defined as a

closed spanning walk of minimum length in G. During the 10-year period 1973–1983,

this concept received considerable attention. For example, Hamiltonian walks were

also studied by Asano, Nishizeki and Watanabe [1], [2], Bermond [3], Nebeský [9],

and Vacek [12]. It was shown in [5] that the Hamiltonian number of a connected

graph G is, in fact, the length of a Hamiltonian walk in G. This concept was studied

further in [4], [10], [11].

A concept related to the Hamiltonian number of a graph was introduced in [10].

A graph has been called traceable if it contains a Hamiltonian path. Therefore,

every Hamiltonian graph is traceable. The converse is not true of course. For a

connected graph G of order n > 2 and an ordering (also called a linear ordering)

s : v1, v2, . . . , vn of vertices of G, the number d(s) is defined as

d(s) =

n−1
∑

i=1

d(vi, vi+1).

The traceable number t(G) of G is defined in [10] by

t(G) = min{d(s)},

where the minimum is taken over all linear orderings s of vertices of G. Thus if G

is a connected graph of order n > 2, then t(G) > n − 1. Furthermore, t(G) = n − 1

if and only if G is traceable. As with Hamiltonian numbers of graphs, there is an

alternative way to define the traceable number of a connected graph. It was shown

in [10] that the traceable number of a connected graph G is the minimum length of

a spanning walk in G. All of the results stated in this section appear in [10].

Theorem 1.1. For every nontrivial connected graph G,

1 6 h(G) − t(G) 6 diam(G).

Furthermore, h(G) − t(G) = 1 if and only if G is Hamiltonian.

Theorem 1.2. Let G be a nontrivial connected graph of order n such that l is

the length of a longest path in G and p is the maximum size of a spanning linear

forest in G. Then

2n − 2 − p 6 t(G) 6 2n − 2 − l.
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For a vertex v in a connected graph G, the eccentricity e(v) of v is the largest

distance between v and a vertex of G. The diameter diam(G) of a connected graph

G is the largest eccentricity among all vertices of G.

Theorem 1.3. If T is a nontrivial tree of order n, then

t(T ) = 2n − 2 − diam(T ).

If G is a connected graph and H is a connected spanning subgraph of G, then

dG(u, v) 6 dH(u, v) for every two vertices u and v of G and so t(G) 6 t(H). In

particular, if G is a connected graph and T is a spanning tree of G, then t(G) 6 t(T ).

Theorem 1.4. If G is a connected graph of order n > 3, then

n − 1 6 t(G) 6 2n − 4.

Furthermore,

(a) t(G) = 2n − 4 if and only if G = K3 or G = K1,n−1;

(b) t(G) = 2n − 5 if and only if (1) n = 4 and G 6= K1,3, or (2) n > 5 and

G = K1,n−1 + e or G is a double star of order n; and

(c) for each pair k, n of integers with 3 6 n − 1 6 k 6 2n − 4, there exists a

connected graph of order n with traceable number k.

For a vertex v of a nontrivial connected graph G, the traceable number t(v) of v

is defined by

t(v) = min{d(s)},

where the minimum is taken over all linear orderings s of vertices of G whose first

term is v. Thus t(v) > n − 1 for every vertex v of G. Furthermore, t(v) = n − 1 if

and only if G contains a Hamiltonian path with initial vertex v. Observe that

t(G) = min{t(v) : v ∈ V (G)}.

Moreover, the traceable number of a vertex v in a connected graph G is the minimum

length of a spanning walk in G whose initial vertex is v.

Theorem 1.5. Let G be a connected graph and let u and v be adjacent vertices

of G. Then

|t(u) − t(v)| 6 1.

Therefore, if k is an integer such that

min{t(v) : v ∈ V (G)} 6 k 6 max{t(v) : v ∈ V (G)},

then there exists a vertex w of G such that t(w) = k.
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Theorem 1.6. If T is a nontrivial tree of order n and v is a vertex of T , then

t(v) = 2(n − 1) − e(v).

It was observed in [10] that Theorem 1.6 is not true in general for a nontrivial

connected graph that is not a tree.

2. Basic definitions and preliminary results

For a connected graph G, the upper Hamiltonian number h+(G) is defined in [5]

by

h+(G) = max{d(s)},

where the maximum is taken over all cyclic orderings s of vertices of G. Obviously,

h(G) 6 h+(G) for every connected graph G. The upper Hamiltonian number of a

graph has been studied in [4], [5]. As expected, for a connected graph G, the upper

traceable number t+(G) is defined by

t+(G) = max{d(s)},

where the maximum is taken over all linear orderings s of vertices ofG. Consequently,

t(G) 6 t+(G) for every connected graph G. For each integer n > 3, it was shown

in [5] that Kn and K1,n−1 are the only connected graphs G of order n for which

h(G) = h+(G). In fact, there is only one nontrivial connected graph G of order n

for which t(G) = t+(G). Observe that t(Kn) = t+(Kn) = n − 1 for n > 2. On the

other hand, if G 6= Kn is a connected graph of order n > 3, then G contains two

nonadjacent vertices x and y such that d(x, y) = 2. Let x, z, y be an x − y path

in G. Let s : x, z, y, w1, w2, . . . , wn−3 and s′ : z, x, y, w1, w2, . . . , wn−3 be two linear

orderings of vertices of G. Then d(s′) = d(s)+1 and so t(G) 6= t+(G). We state this

observation as follows.

Observation 2.1. Let G be a nontrivial connected graph of order n. Then

t(G) = t+(G) if and only if G = Kn.

As an illustration, we now establish the upper traceable numbers of complete

multipartite graphs and the hypercubes.
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Proposition 2.2. If G = Kn1,n2,...,nk
, where n = n1 + n2 + . . . + nk and k > 2,

then

t+(G) = 2n− k − 1.

P r o o f. For each integer i with 1 6 i 6 k, let Vi = {vi,1, vi,2, . . . , vi,ni
} be a

partite set of G. Then

s0 : v1,1, v1,2, . . . , v1,n1
, v2,1, v2,2, . . . , v2,n2

, . . . , vk,1, vk,2, . . . , vk,nk

is a linear ordering of vertices of G. Since

d(s0) = (k − 1) +

k
∑

i=1

2(ni − 1) = 2n − k − 1,

it follows that t+(G) > 2n − k − 1. On the other hand, let s : x1, x2, . . . , xn be

an arbitrary linear ordering of vertices of G. Since diam(G) = 2, it follows that

d(xj , xj+1) = 1 or d(xj , xj+1) = 2 for 1 6 j 6 n− 1. Furthermore, there are at most
k
∑

i=1

(ni − 1) = n − k pairs xj , xj+1 (1 6 j 6 n − 1) for which d(xj , xj+1) = 2. Thus

d(s) 6 2(n − k) + 1 · [(n − 1) − (n − k)] = 2n − k − 1

and so t+(G) 6 2n − k − 1. Therefore, t+(G) = 2n− k − 1. �

Proposition 2.3. For each integer n > 2,

t+(Qn) = 2n−1(2n − 1) − n + 1.

P r o o f. First, we show that t+(Qn) 6 2n−1(2n − 1) − n + 1. Let s be an

arbitrary linear ordering of V (Qn) with d(s) = t+(Qn). Since diam(Qn) = n and for

each vertex v in Qn there is exactly one vertex in Qn whose distance from v is n, it

follows that there are at most 2n−1 terms in d(s) equal to n. Consequently, each of

the remaining 2n−1 − 1 terms in d(s) is at most n − 1. Thus

d(s) 6 2n−1n + (2n−1 − 1)(n − 1) = 2n−1(2n − 1) − n + 1

and so t+(Qn) 6 2n−1(2n − 1) − n + 1.

Next we show that t+(Qn) > 2n−1(2n− 1)−n +1. Since the result is true for Q2,

we may assume that n > 3. Let G = Qn. Then G consists of two disjoint copies

G1 and G2 of Qn−1, where the corresponding vertices of G1 and G2 are adjacent.
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For each vertex v of G, there is a unique vertex v of G such that d(v, v) = n =

diam(Qn). Necessarily, exactly one of v and v belongs to G1 for each vertex v of

G. It is well-known that Qn is Hamiltonian for n > 2 and so Qn is traceable. Let

P : v1, v2, . . . , v2n−1 be a Hamiltonian path in G1. Now define a linear ordering s of

V (G) by

s : v1, v1, v2, v2, . . . , v2n−1 , v2n−1 .

Since d(vi, vi) = n and d(vi, vi+1) = 1 for 1 6 i 6 2n−1 − 1, it follows by the triangle

inequality that

n = d(vi, vi) 6 d(vi, vi+1) + d(vi+1, vi) = 1 + d(vi+1, vi).

Thus d(vi+1, vi) > n − 1, which implies that d(vi+1, vi) = n − 1. Hence

t+(Qn) > d(s) = 2n−1n + (2n−1 − 1)(n − 1) = 2n−1(2n − 1) − n + 1,

as desired. �

If s : v1, v2, . . . , vn is an arbitrary linear ordering of vertices of a connected graph,

then for each vertex vi, both d(vi−1, vi) 6 e(vi) (2 6 i 6 n) and d(vi, vi+1) 6 e(vi)

(1 6 i 6 n − 1). Thus, If G is a connected graph of order n > 2 and V (G) =

{v1, v2, . . . , vn}, then

t+(G) 6

n−1
∑

i=1

e(vi).

Since the eccentricity of a vertex in G is at most the diameter of G, we have the

following observation, which provides an upper bound for the upper traceable number

of a graph in terms of its order and diameter.

Observation 2.4. If G is a nontrivial connected graph of order n, then

t+(G) 6 (n − 1) diam(G).

The upper bound for the upper traceable number of a graph described in Obser-

vation 2.4 is sharp. For example, t+(Cn) = (n − 1) diam(Cn) for each odd integer

n > 3, as we show next.
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Proposition 2.5. For each integer n > 3,

t+(Cn) =
⌈ (n − 1)2

2

⌉

.

P r o o f. Let Cn : v1, v2, . . . , vn, v1 and let d = diam(Cn) = ⌊n/2⌋ be the diame-

ter of Cn. We consider two cases according to whether n is odd or n is even.

Case 1. n is odd. Then n = 2k + 1 for some positive integer k and so d = k =

(n − 1)/2. By Observation 2.4, t+(Cn) 6 (n − 1)d. Let

s0 : v1, vk+1, v2k+1, v3k+1, . . . , v(2k+1)k+1

be a linear ordering of elements of V (Cn), where each subscript is expressed modulo

2k + 1 as one of the integers 1, 2, . . . , 2k + 1. Since d(s0) = (2k)k = (n − 1)d, it

follows that t+(Cn) > (n − 1)d. Thus

t+(Cn) = (n − 1)d =
(n − 1)2

2
=

⌈(n − 1)2

2

⌉

if n is odd.

Case 2. n is even. Then n = 2k for some integer k > 2 and so d = k = n/2. Let

s be a linear ordering of vertices of Cn with d(s) = t+(Cn). Since diam(Cn) = k and

for each v ∈ V (Cn) there is exactly one vertex in Cn whose distance from v is k, it

follows that at most k terms in d(s) equal k. Consequently, at least k − 1 terms in

d(s) are k − 1 or less. Thus

d(s) 6 k2 + (k − 1)2 = 2k2 − 2k + 1 =
(n − 1)2 + 1

2

and so t+(Cn) 6 1
2

(

(n − 1)2 + 1
)

. On the other hand, let

s1 : v1, vk+1, v2, vk+2, v3, vk+3, . . . , vk−1, v(k−1)+k, vk, v2k

be a linear ordering of the vertices of Cn. Since d(s1) = k2+(k−1)2 = 1
2

(

(n−1)2+1
)

,

it follows that t+(Cn) > d(s1) = 1
2

(

(n − 1)2 + 1
)

. Therefore,

t+(Cn) =
(n − 1)2 + 1

2
=

⌈(n − 1)2

2

⌉

if n is even. �
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3. A Characterization of graphs whose traceable and

upper traceable numbers differ by 1

By Observation 2.1, the complete graph Kn of order n > 2 is the only nontrivial

connected graph G of order n for which t(G) = t+(G). In this section we first present

a characterization of those connected graphs G for which t+(G) − t(G) = 1.

Theorem 3.1. Let G be a connected graph of order n > 3. Then

t+(G) − t(G) = 1 if and only if G = Kn − e or G = K1,n−1.

P r o o f. First observe that for n > 3, t+(Kn−e) = n and t(Kn−e) = n−1, while

t+(K1,n−1) = 2n− 3 and t(K1,n−1) = 2n− 4. Hence, if G = Kn − e or G = K1,n−1,

then t+(G) − t(G) = 1. It remains therefore to verify the converse.

Let G be a connected graph of order n > 3 such that t+(G)− t(G) = 1. We claim

that diam(G) = 2. Assume, to the contrary, that diam(G) 6= 2. If diam(G) = 1,

then G = Kn. However, t
+(Kn) = t(Kn) = n − 1. If diam(G) > 3, then G contains

two vertices u and v such that d(u, v) = 3. Let u, x, y, v be a u − v path in G and

let v1, v2, . . . , vn−4 be the remaining vertices of G. Also, let v0 = v and

n−5
∑

i=0

d(vi, vi+1) = a.

For the linear orderings

s1 : u, x, y, v, v1, v2, . . . , vn−4

and

s2 : u, y, x, v, v1, v2, . . . , vn−4, d(s1) = a + 3 and d(s2) = a + 5.

Since t(G) 6 d(s1) and t+(G) > d(s2), it follows that t+(G)− t(G) > 2, a contradic-

tion. Thus, diam(G) = 2, as claimed.

We now consider two cases, depending on whether G is traceable.

Case 1. G is traceable. Then t(G) = n− 1. Since G 6= Kn, the graph G contains

at least one pair of nonadjacent vertices. Suppose that G contains two pairs u, v

and x, y of nonadjacent vertices. If the vertices {u, v}∩ {x, y} = ∅, then every linear

ordering s′ beginning with u, v, x, y has d(s′) > n + 1, which is a contradiction. If

{u, v} ∩ {x, y} 6= ∅, say v = x, then every linear ordering s′′ beginning with u, v, y

has d(s′′) > n+1, a contradiction. Hence G contains exactly one pair of nonadjacent

vertices and so G = Kn − e.
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Case 2. G is not traceable. Then t(G) = n + k − 2 for some integer k > 2.

Thus G contains k pairwise vertex-disjoint paths G1, G2, . . . , Gk such that {V (G1),

V (G2), . . ., V (Gk)} is a partition of V (G). However, G does not contain fewer than

k pairwise vertex-disjoint paths with these properties. Suppose that Gi is an xi − yi

path for 1 6 i 6 k. Furthermore, let xi, . . . , yi denote the xi − yi path Gi for

1 6 i 6 k. Then the linear ordering

s : x1, . . . , y1, x2, . . . , y2, . . . , yk−1, xk, . . . , yk

of the vertices of G has the property that d(s) = t(G) = n + k − 2. Furthermore,

d(s) contains exactly k − 1 terms, namely d(yi, xi+1) for 1 6 i 6 k − 1, that equal 2,

with all other terms equal to 1.

Observe that xixj , xiyj, yiyj /∈ E(G) for all i and j with 1 6 i, j 6 k and i 6= j,

for otherwise G contains fewer than k vertex-disjoint paths whose vertex sets form

a partition of V (G).

Next we claim that at most one of the paths Gi (1 6 i 6 k) has order 2 or more.

Suppose to the contrary that there are two such paths, say G1 and G2. Let s0 be a

linear ordering of the vertices of G beginning with x1, x2, y1, y2 and containing the

pairs yi, xi+1 (2 6 i 6 k − 1) as consecutive terms. Then d(s0) contains at least

3 + (k − 2) = k + 1 terms equal to 2. Thus

d(s0) > 2(k + 1) + [(n − 1) − (k + 1)] = n + k,

which is a contradiction. Thus, as claimed, at most one of the paths Gi (1 6 i 6 k)

has order 2 or more, say G1. Since G is connected and none of xixj , xiyj , yiyj are

edges of G for i and j with 1 6 i, j 6 k and i 6= j, the path G1 has order 3 or more.

If G1 has order 3, say G1 is the path x1, v, y1, then vxi ∈ E(G) for 2 6 i 6 k and

x1y1 /∈ E(G) and so G = K1,n−1.

Suppose then thatG1 has order 4 or more. Each of the vertices xi (2 6 i 6 k) must

be adjacent to an interior vertex of G1. Thus x1y1 /∈ E(G), for otherwise, G contains

fewer than k vertex-disjoint paths whose vertex sets form a partition of V (G), which

is a contradiction. Indeed, we claim that each vertex xi (2 6 i 6 k) must be adjacent

to every interior vertex of G1; assume, to the contrary, that some vertex xi, say x2,

is not adjacent to the interior vertex v of G1. Let s∗ be a linear ordering of vertices

of G beginning with v, x2, y1, x1, x3, x4, . . . , xk. Then d(s∗) contains at least k + 1

terms equal to 2. Thus

d(s∗) > 2(k + 1) + [(n − 1) − (k + 1)] = n + k,
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which is a contradiction. Since x2 is adjacent to all interior vertices of G1, there

is a path in G with the vertex set V (G1) ∪ {x2}. However then G contains fewer

than k vertex-disjoint paths whose vertex sets form a partition of V (G), which is a

contradiction. �

4. The upper traceable number of a tree

In this section we establish a formula for the upper traceable number of a tree. In

order to do this, we first study the relationship between the upper traceable number

and upper Hamiltonian number of a graph.

Proposition 4.1. For every connected graph G of order n > 3,

1 6 h+(G) − t+(G) 6 diam(G).

P r o o f. Let sc : v1, v2, . . . , vn, vn+1 = v1 be a cyclic ordering of vertices of G

with d(sc) = h+(G). Then sl : v1, v2, . . . , vn is a linear ordering of vertices of G.

Since

t+(G) > d(sl) = d(sc) − d(v1, vn) > h+(G) − diam(G),

it follows that h+(G) − t+(G) 6 diam(G). On the other hand, let s′l : v′1, v
′

2, . . ., v
′

n

be a linear ordering of vertices of G with d(s′l) = t+(G). Then s′c : v′1, v′2, . . ., v′n,

v′n+1 = v′1 is a cyclic ordering of vertices of G. Since

h+(G) > d(s′c) = d(s′l) + d(v1, vn) > t+(G) + 1,

it follows that h+(G) − t+(G) > 1. �

Proposition 4.2. For every nontrivial connected graph G of order n,

h+(G) − t+(G) = diam(G) if and only if h+(G) = n diam(G).

P r o o f. Let sc : v1, v2, . . . , vn, vn+1 = v1 be a cyclic ordering of the vertices of

G with d(sc) = h+(G). Then sl : v1, v2, . . . , vn is a linear ordering of the vertices of

G. First assume that h+(G) − t+(G) = diam(G). We will show that d(vi, vi+1) =

diam(G) for 1 6 i 6 n. For each i with 1 6 i 6 n, let

si : vi+1, vi+2, . . . , vn, vn+1 = v1, v2, . . . , vi.
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Then

t+(G) > d(si) = d(sc) − d(vi, vi+1) = h+(G) − d(vi, vi+1).

Thus d(vi, vi+1) > h+(G) − t+(G) = diam(G), implying that d(vi, vi+1) = diam(G)

for each i with 1 6 i 6 n. Therefore, h+(G) = d(s) = n diam(G).

For the converse, assume that h+(G) = n diam(G). Since

t+(G) > d(sl) = d(sc) − d(v1, vn) = n diam(G) − d(v1, vn) > (n − 1) diam(G),

it follows by Observation 2.4 that t+(G) = (n − 1) diam(G). Therefore, h+(G) −

t+(G) = diam(G). �

It was shown in [5] that

(1) h+(Pn) =
⌊n2

2

⌋

for n > 2. We now determine the upper traceable number of the path Pn for n > 2.

Proposition 4.3. For each integer n > 2,

t+(Pn) =
⌊n2

2

⌋

− 1.

P r o o f. Since h+(Pn) =
⌊

1
2n2

⌋

, it follows by Proposition 4.1 that t+(Pn) 6
⌊

1
2n2

⌋

− 1. To verify that t+(Pn) >
⌊

1
2n2

⌋

− 1, it suffices to show that there exists

a linear ordering s of the vertices of Pn for which d(s) =
⌊

1
2n2

⌋

− 1. Let Pn :

u1, u2, . . . , un and let us consider two cases according to whether n is odd or n is

even.

Case 1. n is odd. Then n = 2k + 1 for some positive integer k. Let

s0 : uk+1, u1, u2k+1, u2, u2k, u3, u2k−1, . . . , uk, uk+2

be a linear ordering of vertices of Pn. Since

d(s0) = k + (2k) + (2k − 1) + (2k − 2) + . . . + 2

= k + (1 + 2 + 3 + . . . + 2k) − 1 = k +

(

2k + 1

2

)

− 1

= k(2k + 2) − 1 =
n2 − 1

2
− 1 =

⌊n2

2

⌋

− 1,

it follows that t+(Pn) >
⌊

1
2n2

⌋

− 1. Thus t+(Pn) =
⌊

1
2n2

⌋

− 1 if n is odd.
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Case 2. n is even. Then n = 2k for some integer k > 2. Let

s1 : uk+1, u1, u2k, u2, u2k−1, u3, u2k−2, . . . , uk−1, uk+2, uk

be a linear ordering of vertices of Pn. Since

d(s1) = k + (2k − 1) + (2k − 2) + . . . + 2

= k + [1 + 2 + 3 + . . . + (2k − 1)] − 1 = k +

(

2k

2

)

− 1

= 2k2 − 1 =
n2

2
− 1 =

⌊

n2

2

⌋

− 1,

it follows that t+(Pn) >
⌊

1
2n2

⌋

− 1. Thus t+(Pn) =
⌊

1
2n2

⌋

− 1 if n is even. �

We will now consider trees in general. For each edge e of a tree T , the component

number cn(e) of e is defined in [5] as the minimum order of a component of T − e.

For example, the edge e5 of the tree T of Figure 1(a) has component number 3 since

the order of the smaller component of T − e5 is 3. Each edge of this tree is labeled

with its component number in Figure 1(b).

e3

e5 e8 e6

e2

e1

e7

e4
v1

v2

v3

v4 v5

v6

v7

v8

v9
T :

1

3 4 2

1

1
1

1

Figure 1. Component numbers of edges

An upper bound for the upper Hamiltonian number of a tree was established in

[5] in terms of the component numbers of its edges, which we state as follows.

Theorem 4.4. If T is a nontrivial tree, then

h+(T ) 6 2
∑

e∈E(T )

cn(e).

For the tree T of Figure 1,

8
∑

i=1

cn(ei) = 1 + 1 + 3 + 1 + 4 + 1 + 2 + 1 = 14.

Thus h+(T ) 6 28 by Theorem 4.4. With the aid of Theorem 4.4 and Proposition 4.1,

we are able to establish a formula for the upper traceable number of a tree.
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Theorem 4.5. If T is a nontrivial tree, then

t+(T ) = 2
∑

e∈E(T )

cn(e) − 1.

P r o o f. By Theorem 4.4 and Proposition 4.1,

t+(T ) 6 h+(T ) − 1 6 2
∑

e∈E(T )

cn(e) − 1.

Thus it remains to show that t+(T ) > 2
∑

e∈E(T )

cn(e) − 1. Since the theorem holds if

T has order 2, we may assume that T has order 3 or more. Suppose that T1 = T

has order n > 3. Let v2 be an end-vertex of T . Furthermore, let Q2 be a maximal

path in T whose initial edge e1 is incident with v2 and such that each successive edge

in Q2 is chosen so that it has the maximum component number (among all edges

available). Suppose that Q2 is a v2 − v3 path. Necessarily, v3 is an end-vertex of

T . Let T2 = T − {v2} and let Q3 be a maximal path in T2 whose initial edge e2 is

incident with v3 and such that each successive edge in Q3 is chosen so that it has

the maximum component number in T2 (among all edges available). We continue

this process until we arrive at the vn−1 − vn path Qn−1. The final vertex of T is

denoted by v1, which is necessarily adjacent to vn. Let en−1 = vnv1. This procedure

is illustrated in Figure 2 for the tree T of Figure 1, where each vi+1−vi+2 path Qi+1

for 1 6 i 6 n − 2 is indicated in bold.

For 2 6 i 6 n − 2, the edge ei is the initial edge of the vi+1 − vi+2 path Qi+1 in

the tree Ti = T −{v2, v3, . . . , vi}. Furthermore, let Q1 be the v1−v2 path in T = T1.

Consider the linear ordering

s : v1, v2, . . . , vn

of vertices of T . We show that

(2) d(s) = 2
∑

e∈E(T )

cn(e) − 1.

To verify (2), we show that for every integer i with 1 6 i 6 n − 2, the edge ei

is traversed 2 cn(ei) times by the paths Q1, Q2, . . . , Qn−1, while en−1 is traversed

2 cn(en−1)− 1 times by the paths Q1, Q2, . . . , Qn−1. It is certainly the case when an

edge is a pendant edge, so suppose that e is an edge of T that is not a pendant edge.

For each tree Tj containing e, let Tj,1 and Tj,2 be the components of Tj − e such

that |V (Tj,1)| 6 |V (Tj,2)| + 1. We claim that if the initial vertex vj+1 of the path

Qj+1 belongs to Tj,1, then the terminal vertex vj+2 belongs to Tj,2, that is, the edge

e is traversed by Qj+1. Let cj = cnTj
(e) and e = xy such that x belongs to Tj,1.
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v2

v3

Q2

T1 = T :

e2

v3

v4

Q3

T2 :

e3

v4
v5

Q4

T3 :

e4

v5

v6

Q5

T4 :

e5

v6

v7
Q6

T5 :
e6

v7

v8
Q7

T6 :

e7

v8

v9

Q8

T7 :
e8v1 v9T8 :

Figure 2. A step in the proof of Theorem 4.5

If |V (Tj,1)| 6 |V (Tj,2)|, then note first that every edge in Tj,1 has component

number at most cj − 1. Assume, to the contrary, that the terminal vertex vj+2 of

the path Qj+1 belongs to Tj,1. Let QA : vj+1 = u1, u2, . . . , uk = x and QB : vj+2 =

w1, w2, . . . , wl = x be the vj+1 − x path and vj+2 − x path, respectively. Obviously,

both QA and QB are entirely contained in Tj,1. Furthermore,

Qj+1 : vj+1 = u1, u2, . . . , uk′ = wl′ , wl′−1, . . . , w1 = vj+2

for some integers k′ and l′ with 2 6 k′ 6 k and 2 6 l′ 6 l. This implies that

cnTj
(uk′uk′+1) 6 cnTj

(wl′wl′−1).

On the other hand, however, observe that

cnTj
(uk′uk′+1) > cnTj

(uk′−1uk′) + cnTj
(wl′wl′−1) > cnTj

(wl′wl′−1),

a contradiction.
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If |V (Tj,1)| = |V (Tj,2)| + 1, then at most one edge in Tj,1 has component number

cj and each of the remaining edges in Tj,1 has component number at most cj − 1.

Then by a similar argument given for the case where |V (Tj,1)| 6 |V (Tj,2)|, if vj+1

belongs to Tj,1, then vj+2 must belong to Tj,2.

Now let T ′ and T ′′ be the components of T − e, where the order of T ′ is c = cn(e).

Suppose that V (T ′) = {vn1
, vn2

, . . . , vnc
}, where n1 6 n2 6 . . . 6 nc. Furthermore,

let e = xy such that x belongs to T ′. Necessarily then, x = vnc
. In each tree

Tj containing e, let T ′

j and T ′′

j be the components of Tj − e containing x and y,

respectively. Then by the claim given above, we have the following:

(1) |V (T ′

j)| 6 |V (T ′′

j )|.

(2) v1 belongs to T ′′.

(3) No two vertices of T ′ are consecutive in s.

If x 6= vn, then e 6= en−1. Since vn1+1, vn2+1, . . . , vnc+1 belong to T ′′, it follows

that e is traversed 2c times by the paths Q1, Q2, . . . , Qn−1. On the other hand, if

x = vn, then e = en−1. Since vn1+1, vn2+1, . . . , vnc−1+1 belong to T ′′, it follows

that e is traversed 2c − 1 times by the paths Q1, Q2, . . . , Qn−1. Thus, as claimed,

d(s) = 2
∑

e∈E(T )

cn(e) − 1. Therefore,

t+(T ) > d(s) = 2
∑

e∈E(T )

cn(e) − 1,

providing the desired result. �

Since h+(T ) > t+(T ) + 1 for every nontrivial tree T by Proposition 4.1, the

following corollary is a consequence of Theorems 4.4 and 4.5.

Corollary 4.6. If T is a nontrivial tree, then

h+(T ) = 2
∑

e∈E(T )

cn(e).

We now illustrate Theorem 4.5 and Corollary 4.6. For the tree T of Figure 1, we

have seen that
8
∑

i=1

cn(ei) = 14. Thus by Theorem 4.5 and Corollary 4.6, t+(T ) =

28 − 1 = 27 and h+(T ) = 28. On the other hand, using the technique described in

the proof of Theorem 4.5, we obtain a linear ordering s : v1, v2, . . . , v9 of vertices of

T with d(s) = t+(T ) = 27. Observe that for the cyclic ordering sc : v1, v2, . . . , v9, v1

of vertices of T , d(sc) = h+(T ) = 28.

Upper and lower bounds for the upper Hamiltonian number of a tree was estab-

lished in [5] in terms of its order, as we state now.
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Theorem 4.7. Let T be a tree of order n > 3. Then

2n − 2 6 h+(T ) 6 ⌊n2/2⌋.

Moreover,

(a) h+(T ) = 2n − 2 if and only if T = K1,n−1,

(b) h+(T ) = ⌊n2/2⌋ if and only if T = Pn.

The following corollary is a consequence of Proposition 4.1, Theorems 4.5 and 4.7,

and Corollary 4.6.

Corollary 4.8. Let T be a tree of order n > 3. Then

2n − 3 6 t+(T ) 6 ⌊n2/2⌋ − 1.

Furthermore,

(a) t+(T ) = 2n − 3 if and only if T = K1,n−1,

(b) t+(T ) = ⌊n2/2⌋ − 1 if and only if T = Pn.
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