[1] T. Arias-Marco:
The classification of 4-dimensional homogeneous D’Atri spaces revisited. Differential Geometry and its Applications (to appear).
MR 2293639 |
Zbl 1121.53026
[2] L. Bérard Bergery:
Les espaces homogènes riemanniens de dimension 4. Géométrie riemannienne en dimension 4, L. Bérard Bergery, M. Berger, C. Houzel (eds.), CEDIC, Paris, 1981. (French)
MR 0769130
[3] E. Boeckx, L. Vanhecke, O. Kowalski:
Riemannian Manifolds of Conullity Two. World Scientific, Singapore, 1996.
MR 1462887
[5] J. E. D’Atri, H. K. Nickerson:
Divergence preserving geodesic symmetries. J. Differ. Geom. 3 (1969), 467–476.
MR 0262969
[6] J. E. D’Atri, H. K. Nickerson:
Geodesic symmetries in spaces with special curvature tensors. J. Differ. Geom. 9 (1974), 251–262.
MR 0394520
[7] G. R. Jensen:
Homogeneous Einstein spaces of dimension four. J. Differ. Geom. 3 (1969), 309–349.
MR 0261487 |
Zbl 0194.53203
[8] S. Kobayashi, K. Nomizu:
Foundations of Differential Geometry I. Interscience, New York, 1963.
MR 0152974
[9] O. Kowalski:
Spaces with volume-preserving symmetries and related classes of Riemannian manifolds. Rend. Semin. Mat. Univ. Politec. Torino, Fascicolo Speciale (1983), 131–158.
MR 0829002 |
Zbl 0631.53033
[10] O. Kowalski, F. Prüfer, L. Vanhecke:
D’Atri Spaces. Topics in Geometry. Prog. Nonlinear Differ. Equ. Appl. 20 (1996), 241–284.
MR 1390318
[13] F. Podestà, A. Spiro:
Four-dimensional Einstein-like manifolds and curvature homogeneity. Geom. Dedicata 54 (1995), 225–243.
DOI 10.1007/BF01265339 |
MR 1326728
[15] Z. I. Szabó: Spectral theory for operator families on Riemannian manifolds. Proc. Symp. Pure Maths. 54 (1993), 615–665.