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Abstract. The property of being a D’Atri space (i.e., a space with volume-preserving
symmetries) is equivalent to the infinite number of curvature identities called the odd
Ledger conditions. In particular, a Riemannian manifold (M, g) satisfying the first odd
Ledger condition is said to be of type A. The classification of all 3-dimensional D’Atri
spaces is well-known. All of them are locally naturally reductive. The first attempts to
classify all 4-dimensional homogeneous D’Atri spaces were done in the papers by Podesta-
Spiro and Bueken-Vanhecke (which are mutually complementary). The authors started
with the corresponding classification of all spaces of type A, but this classification was
incomplete. Here we present the complete classification of all homogeneous spaces of type A
in a simple and explicit form and, as a consequence, we prove correctly that all homogeneous
4-dimensional D’Atri spaces are locally naturally reductive.

Keywords: Riemannian manifold, naturally reductive Riemannian homogeneous space,
D’Atri space
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1. Introduction and preliminaries

A D’Atri space is defined as a Riemannian manifold (M, g) whose local geodesic

symmetries are volume-preserving. D’Atri and Nickerson (see [6]) proved that every

naturally reductive Riemannian manifold has this property. See [10] for a survey of

the whole topic. The second author in [9] classified all 3-dimensional D’Atri spaces by

showing that they are all locally isometric to naturally reductive homogeneous spaces

The first author’s work has been partially supported by D.G.I. (Spain) and FEDER
Project MTM 2004-06015-C02-01, by a grant AVCiTGRUPOS03/169 and by a Re-
search Grant from Ministerio de Educación y Cultura. The second author’s work
has been supported by the grant GA ČR 201/05/2707 and it is part of the research
project MSM 0021620839 financed by the Ministry of Education (MŠMT).
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(including the trivial cases of locally symmetric spaces). Hence all these spaces are

locally homogeneous. A similar result is not known in dimension 4. Then a natural

problem occurs to classify all four-dimensional homogeneous D’Atri spaces. The first

attempts in this direction were made in two subsequent papers [13] and [4]. As we

shall see later, the final classification announced in [4] is correct but not well-founded

and its proof needs to be completed. This is the main purpose of the present paper.

Let us recall that the property of being a D’Atri space is equivalent to the infinite

number of curvature identities called the odd Ledger conditions L2k+1, k > 1 (see [5]

and [15]). In particular, the first two non-trivial Ledger conditions are

L3 : (∇X̺)(X,X) = 0 and L5 :

n
∑

a,b=1

RXEaXEb
(∇XR)XEaXEb

= 0

where X is any tangent vector at any point m ∈ M and {E1, . . . , En} is any or-
thonormal basis of TmM . Here R denotes the curvature tensor and ̺ the Ricci
tensor of (M, g), and n = dimM .

Thus, it is natural to start with the investigation of all homogeneous Riemannian

4-manifolds satisfying the simplest Ledger condition L3, which is the first approxima-

tion of the D’Atri property. This condition is called in [13] the “class A condition”.
More explicitly, we have

Definition 1. A Riemannian manifold M is said to belong to class A, or to be
of type A, if its Ricci curvature tensor ̺ is cyclic-parallel that is, if (∇X̺)(X,X) = 0

for every vector field X tangent to M or, equivalently, if

(∇X̺)(Y, Z) + (∇Y ̺)(Z,X) + (∇Z̺)(X,Y ) = 0

for all vector fields X , Y , Z tangent to M .

In dimension three, H. Pedersen and P. Tod ([12]) proved the following result:

Theorem 1. All three-dimensional smooth Riemannian manifolds belonging to

class A are locally homogeneous, and they are either locally symmetric or locally
isometric to naturally reductive spaces.

(Note that earlier, in [9], both Ledger conditions L3, L5 and the real analyticity

condition were used for the proof of the conclusion of Theorem 1.)

Now, let us recall the concept of a curvature homogeneous space. A smooth

Riemannian manifoldM is called curvature homogeneous if for any two points p, q ∈
M there exists a linear isometry F : TpM → TqM such that F

∗Rq = Rp. This is also

equivalent to saying that, locally, there always exists a smooth field of orthonormal
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frames with respect to which the components of the curvature tensor R are constant
functions (see, for instance, I.M. Singer [14], or the monograph [3]). Hence it is

obvious that all principal Ricci curvatures are constant. Clearly, any homogeneous

manifold is curvature homogeneous. On the other hand, the locally homogeneous

Riemannian manifolds in dimensions > 3 form a “negligible” subclass of all curvature

homogeneous spaces (see a survey in [3]).

As the first and most extensive step of our classification procedure, we shall look

for all 4-dimensional homogeneous spaces of classA. In this direction, F. Podesta and
A. Spiro ([13]) published a classification theorem assuming that at most three of the

constant Ricci eigenvalues are distinct. In their paper, (M, g) was not necessarily ho-

mogeneous but only curvature homogeneous, which is a more general situation. Yet,

there was a gap in their main theorem, which we will explain later. (See Appendix.)

They also put the question if there are, in dimension four, spaces of class A with four
distinct Ricci eigenvalues. Some years later, P. Bueken and L. Vanhecke ([4]) found

a two-parameter family of such spaces. However, their presentation of this family

was not explicit and lacked geometrical interpretation (they referred only to com-

puter results, which were not accessible). They also concluded in [4] that all simply

connected homogeneous D’Atri spaces in dimension 4 are naturally reductive. But

this final result was not completely satisfactory either just because of the gap in [13],

and because the new family of spaces in [4] was not described explicitly.

In the present paper, we derive the correct and complete local classification of

all 4-dimensional homogeneous spaces of type A in a simple and explicit form.
Our method is based on the classification of Riemannian homogeneous 4-spaces by

L. Bérard Bergery ([2]) and on computer support using the programMathematica 5.0.

We shall now formulate our basic result, which will be proved in the next section.

Classification Theorem. Let (M, g) be a four-dimensional homogeneous Rie-

mannian manifold of type A. Then one of the following five cases occurs:
i) M is locally symmetric;

ii) (M, g) is locally isometric to a Riemannian product M3 × R, where M3 is a

3-dimensional Riemannian naturally reductive space with two distinct Ricci

curvatures (̺1, ̺2 = ̺1, ̺3), ̺3 6= ̺1. ThusM is locally isometric to a naturally

reductive homogeneous space.

iii) (M, g) is locally isometric to a simply connected Lie group (G, gγ) whose Lie

algebra g is described by

[e2, e1] = e2, [e1, e3] = e3, [e2, e3] = e4,

[e1, e4] = [e2, e4] = [e3, e4] = 0,
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and which is endowed with the left-invariant metric

gγ =
4

γ2
w1 ⊗ w1 + w2 ⊗ w2 + w3 ⊗ w3 + γ2w4 ⊗ w4,

where γ ∈ R+ and {wi} is the dual basis of {ei}. The metrics gγ have Ricci

eigenvalues ̺1 = ̺2 = ̺3 = − 1
2γ

2, ̺4 = 1
2γ

2 and are not isometric to one

another for different values of γ. Moreover, the Riemannian manifolds (G, gγ)

are irreducible and not locally symmetric. They are not D’Atri spaces.

iv) (M, g) is locally isometric to a simply connected Lie group (G, g(c,k)) whose Lie

algebra g is described by

[e1, e2] = e3, [e3, e1] =
A+

4
e2, [e2, e3] =

A−

4
e1,

[e1, e4] = 0, [e2, e4] = 0, [e3, e4] = 0,

where A± = 3 − 3k2 ±
√

1 + 2k2 − 3k4 > 0, k ∈ ]0, 1[ \
{√

5
21

}

, and which is

endowed with the left-invariant metric

g(c,k) =
1

c2
(w1 ⊗ w1 + w2 ⊗ w2 + w3 ⊗ w3 + kw3 ⊗ w4 + w4 ⊗ w4),

where {wi} is the dual basis of {ei} and c ∈ R+ is another parameter. The

metrics g(c,k) have four distinct Ricci eigenvalues

̺1 =
c2

8

(

2 − 6k2 −
√

1 + 2k2 − 3k4
)

, ̺2 =
c2

8

(

2 − 6k2 +
√

1 + 2k2 − 3k4
)

,

̺3 =
c2

16

(

3 − 3k2 −
√

9 − 2k2 + 57k4
)

, ̺4 =
c2

16

(

3 − 3k2 +
√

9 − 2k2 + 57k4
)

.

Moreover, the Riemannian manifolds (G, g(c,k)) are irreducible and not locally

symmetric. They are not D’Atri spaces.

v) (M, g) is locally isometric to a simply connected Lie group (G, gc), whose Lie

algebra g is described by

[e1, e2] = e3, [e3, e1] =
6

7
e2, [e2, e3] =

2

7
e1,

[e1, e4] = 0, [e2, e4] = 0, [e3, e4] = 0,

and which is endowed with the left-invariant metric

gc =
1

c2

(

w1 ⊗ w1 + w2 ⊗ w2 + w3 ⊗ w3 +

√

5

21
w3 ⊗ w4 + w4 ⊗ w4

)

,
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where c ∈ R+ and {wi} is the dual basis of {ei}. The metrics gc have Ricci

eigenvalues ̺1 = ̺3 = − 1
14 c

2, ̺2 = 3
14c

2, ̺4 = 5
14c

2 and are not isometric to one

another for different values of c. Moreover, the Riemannian manifolds (G, gc)

are irreducible and not locally symmetric. They are not D’Atri spaces.

It is well-known that every locally symmetric space is a D’Atri space and that,

moreover, it is locally isometric to a naturally reductive homogeneous space. In

addition, the Riemannian product spacesM3×R described in ii) of the Classification
Theorem are locally isometric to naturally reductive homogeneous spaces and hence

they are D’Atri spaces. On the other hand, we will show that the spaces described

in iii), iv) and v) do not satisfy the Ledger condition L5 and thus they cannot be

D’Atri spaces. Combining these results with our Classification Theorem, we conclude

with

Main Theorem. In dimension 4, all simply connected homogeneous D’Atri

spaces are naturally reductive spaces (including symmetric spaces as special cases).

2. Proof of the classification theorem

In [2], L. Bérard Bergery published the classification of Riemannian homogeneous

4-spaces. In particular, he obtained

Proposition 1. In dimension 4, each simply connected Riemannian homoge-

neous space M is either symmetric or isometric to a Lie group with a left-invariant

metric. In the second case, either M is a solvable group or it is one of the groups

SU(2) × R, Ŝl(2,R) × R.
Now, the main part of our computations is to check which of these spaces are

of type A. We shall work at the Lie algebra level and use Mathematica 5.0 for
the computation. Let us start with the non-solvable group case and later we will

continue with the solvable case.

2.1. Non-solvable case (study of SU(2) × R and ^Sl(2,R) × R)
Let g3 be a unimodular Lie algebra with a scalar product 〈 , 〉3. According to [11,

p. 305], there is an orthonormal basis {f1, f2, f3} of g3 such that

(1) [f2, f3] = af1, [f3, f1] = bf2, [f1, f2] = cf3,

where a, b, c are real numbers. In the following, we shall study the cases g3 = su(2)

and g3 = sl(2,R) which are characterized by the inequality abc 6= 0.
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Let now g = g3 ⊕ R be a direct sum, and 〈 , 〉 a scalar product on g defined as

follows: we choose a basis {f1, f2, f3, f4} of unit vectors such that {f1, f2, f3} is an
orthonormal basis of g3 satisfying (1) and f4 spans R. Here R need not be orthogonal
to g3. In particular, we assume

(2) [fi, f4] = 0, 〈fi, f4〉 = ki, i = 1, 2, 3.

Here a, b, c, k1, k2, k3 are arbitrary parameters with
3
∑

i=1

k2
i < 1 due to the positivity

of the scalar product. Choosing a convenient orientation of f4, we can always assume

that k3 > 0.

Now we replace the basis {fi} by a new basis {ei} (i = 1, 2, 3, 4), putting

(3) ei = fi, i = 1, 2, 3, e4 =
1

R

(

f4 −
3

∑

i=1

kifi

)

where R =

√

1 −
3

∑

i=1

k2
i > 0. Then we get an orthonormal basis for which

[e2, e3] = ae1, [e3, e1] = be2, [e1, e2] = ce3,(4)

[e1, e4] =
1

R
(k3be2 − k2ce3), [e2, e4] =

1

R
(k1ce3 − k3ae1),

[e3, e4] =
1

R
(k2ae1 − k1be2).

Next, we consider the simply connected Lie group G with a left invariant Rieman-

nian metric g corresponding to the Lie algebra g and the scalar product 〈 , 〉 on it.
Here the vectors ei determine some left-invariant vector fields on G.

According to our construction, the underlying group G is the direct product of

the group SU(2) or Ŝl(2,R) and the multiplicative group R+ .

Now we are going to calculate the expression for the Levi-Civita connection, the

curvature tensor, the Ricci matrix, and the condition for the Ricci tensor to be cyclic

parallel.

We know that

2g(∇XZ, Y ) = Zg(X,Y ) +Xg(Y, Z)− Y g(Z,X)(5)

− g([Z,X ], Y ) − g([X,Y ], Z) + g([Y, Z], X)

for every triplet (X,Y, Z) of vectors fields. Then using this formula we obtain by

easy calculation
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Lemma 1.

(6) ∇ei
ei = 0, i = 1, 2, 3, 4,

∇e1
e2 =

(c+ b− a)

2
e3 +

(a− b)k3

2R
e4, ∇e2

e1 =
(b− a− c)

2
e3 +

(a− b)k3

2R
e4,

∇e1
e3 =

(a− b− c)

2
e2 +

(c− a)k2

2R
e4, ∇e3

e1 =
(a+ b− c)

2
e2 +

(c− a)k2

2R
e4,

∇e1
e4 =

(b − a)k3

2R
e2 +

(a− c)k2

2R
e3, ∇e4

e1 =
−(b+ a)k3

2R
e2 +

(a+ c)k2

2R
e3,

∇e2
e3 =

(a+ c− b)

2
e1 +

(b− c)k1

2R
e4, ∇e3

e2 =
(c− a− b)

2
e1 +

(b− c)k1

2R
e4,

∇e2
e4 =

(b − a)k3

2R
e1 +

(c− b)k1

2R
e3, ∇e4

e2 =
(a+ b)k3

2R
e1 −

(b+ c)k1

2R
e3,

∇e3
e4 =

(a− c)k2

2R
e1 +

(c− b)k1

2R
e2, ∇e4

e3 =
−(a+ c)k2

2R
e1 +

(b+ c)k1

2R
e2.

Now, we denote by Aij the elementary skew-symmetric operators whose corre-

sponding action is given by the formulas Aij(el) = δilej − δjlei. Then, by a lengthy

but elementary calculation we get

Lemma 2. The components of the curvature operator are

R(e1, e2) = α1212A12 + α1213A13 + α1214A14 + α1223A23 + α1224A24,(7)

R(e1, e3) = α1312A12 + α1313A13 + α1314A14 + α1323A23 + α1334A34,

R(e1, e4) = α1412A12 + α1413A13 + α1414A14 + α1424A24 + α1434A34,

R(e2, e3) = α2312A12 + α2313A13 + α2323A23 + α2324A24 + α2334A34,

R(e2, e4) = α2412A12 + α2414A14 + α2423A23 + α2424A24 + α2434A34,

R(e3, e4) = α3413A13 + α3414A14 + α3423A23 + α3424A24 + α3434A34,

where the coeficients αijlm = g(R(ei, ej)el, em) satisfy the standard symmetries with

respect to their indices and

α1212 =
1

4R2
((3c2 − (a− b)2 − 2c(a+ b))R2 − (a− b)2k2

3),(8)

α1213 =
1

4R2
((a− b)(a− c)k2k3),

α1214 =
1

4R
((a− c)(a− b+ 3c)k2),

α1223 =
1

4R2
((a− b)(b − c)k1k3),

α1224 =
1

4R
((b − c)(a− b− 3c)k1),
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α1313 =
1

4R2
((3b2 − (a− c)2 − 2b(a+ c))R2 − (a− c)2k2

2),

α1314 =
1

4R
((a− b)(a− c+ 3b)k3),

α1323 =
1

4R2
((a− c)(b − c)k1k2),

α1334 =
1

4R
((c− b)(c− a+ 3b)k1),

α1414 =
1

4R2
((4c2 − (a+ c)2)k2

2 + (4b2 − (a+ b)2)k2
3),

α1424 =
1

4R2
((c(a+ b − 3c) + ab)k1k2),

α1434 =
1

4R2
((b(a+ c− 3b) + ac)k1k3),

α2323 =
1

4R2
((3a2 − (b− c)2 − 2a(b+ c))R2 − (b− c)2k2

1),

α2324 =
1

4R
((b − a)(3a+ b− c)k3),

α2334 =
1

4R
((a− c)(3a− b+ c)k2),

α2424 =
1

4R2
((4c2 − (b+ c)2)k2

1 + (4a2 − (a+ b)2)k2
3),

α2434 =
1

4R2
((a(−3a+ b + c) + bc)k2k3),

α3434 =
1

4R2
((4b2 − (b+ c)2)k2

1 + (4a2 − (a+ c)2)k2
2).

Further, we obtain easily

Lemma 3. The matrix of the Ricci tensor of type (1, 1) expressed with respect

to the basis {e1, e2, e3, e4} is of the form

(9)

























β11
(c2 − ab)k1k2

2R2

(b2 − ac)k1k3

2R2

(b − c)2k1

2R
(c2 − ab)k1k2

2R2
β22

(a2 − bc)k2k3

2R2

(a− c)2k2

2R
(b2 − ac)k1k3

2R2

(a2 − bc)k2k3

2R2
β33

(a− b)2k3

2R
(b− c)2k1

2R

(a− c)2k2

2R

(a− b)2k3

2R
β44

























where

β11 =
a2 − (b− c)2

2
+

(a2 − b2)k2
3 + (a2 − c2)k2

2

2R2
,

β22 =
b2 − (a− c)2

2
+

(b2 − a2)k2
3 + (b2 − c2)k2

1

2R2
,
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β33 =
c2 − (a− b)2

2
+

(c2 − a2)k2
2 + (c2 − b2)k2

1

2R2
,

β44 =
−(b− c)2k2

1 − (a− c)2k2
2 − (a− b)2k2

3

2R2
.

Next, the condition for the metric g on G to be cyclic parallel (i.e., of type A) is

(10) (∇X̺)(Y, Z) + (∇Y ̺)(Z,X) + (∇Z̺)(X,Y ) = 0

for every triplet (X,Y, Z) of vectors fields, where ̺ is the Ricci tensor of type (0, 2).

This equation has a purely algebraic character because the metric g is left-invariant.

Hence, we can substitute forX,Y, Z every triplet chosen from the basis {e1, e2, e3, e4}
(with possible repetition).

We obtain, by a lengthy but routine calculation

Lemma 4. The condition (10) for the Ricci tensor of type (0, 2) is equivalent to

the system of algebraic equations

(1, 1, 2) → k1k3(b − a)(a− 2b+ c) = 0,(11)

(1, 1, 3) → k1k2(a− c)(a+ b− 2c) = 0,

(2, 2, 1) → k2k3(a− b)(2a− b− c) = 0,

(2, 2, 3) → k1k2(c− b)(a+ b− 2c) = 0,

(3, 3, 1) → k2k3(c− a)(2a− b− c) = 0,

(3, 3, 2) → k1k3(b − c)(2b− a− c) = 0,

(4, 4, 1) → k2k3(2a− b− c)(b− c) = 0,

(4, 4, 2) → k1k3(a− 2b+ c)(a− c) = 0,

(4, 4, 3) → k1k2(a+ b− 2c)(b− a) = 0,

(1, 2, 3) → 2R2(a− b)(a− c)(b − c) + k2
1(c− b)(a(b + c) − 2bc)

+ k2
2(a− c)(b(a+ c) − 2ac) + k2

3(b − a)(c(a+ b) − 2ab) = 0,

(1, 2, 4) → k3(R
2(b− a)(2a− c)(2b− c) + k2

1b(2ab− 3ac+ 2bc− c2)

+ k2
2a(3bc+ c2 − 2ab− 2ac) + k2

34ab(b− a)) = 0,

(1, 3, 4) → k2(R
2(c− a)(2a− b)(b− 2c) + k2

1c(3ab− 2ac− 2bc+ b2)

+ k2
24ac(a− c) + k2

3a(2ab− b2 + 2ac− 3bc)) = 0,

(2, 3, 4) → k1(R
2(b− c)(2b− a)(a− 2c) + k2

14bc(c− b)

+ k2
2c(2ac+ 2bc− a2 − 3ab) + k2

3b(a
2 − 2ab+ 3ac− 2bc)) = 0,
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(1, 1, 4) → k1k2k3(a+ b + c)(c− b) = 0,

(2, 2, 4) → k1k2k3(a+ b + c)(a− c) = 0,

(3, 3, 4) → k1k2k3(a+ b + c)(b− a) = 0.

Here the symbol “(α, β, γ) →” indicates the substitution of (eα, eβ, eγ) for (X,Y, Z)

respectively.

Now, the goal is to find the values of a, b, c, k1, k2 and k3 which satisfy the system

of equations (11) and to study each of these cases.

Proposition 2. The only possible solutions of the system of algebraic equa-

tions (11) are, up to a re-numeration of the triplet {e1, e2, e3}, the following ones:
1. a = b = c 6= 0, k1, k2, k3 arbitrary.

Here three of the four Ricci eigenvalues are equal and ∇R = 0. Hence, the

corresponding spaces belong to the case i) of the Classification Theorem.

2. a = b 6= 0, a 6= c 6= 0, k1 = k2 = 0, k3 arbitrary.

In this situation, the corresponding spaces are Riemannian direct productsM3×R, not locally symmetric, with the Ricci eigenvalues ̺1 = ̺2 = 1
2 (2ac − c2),

̺3 = 1
2 c

2, ̺4 = 0. Hence, they give the case ii) of the Classification Theorem.

3. a = 1
4cA−, b = 1

4cA+, c 6= 0, k1 = k2 = 0, k2
3 ∈ ]0, 1[ \ { 2

3 ,
5
21}, and A± =

3 − 3k2
3 ±

√

1 + 2k2
3 − 3k4

3 > 0.

For this situation, (∇e4
R)(e4, e2)e4 6= 0 and all Ricci eigenvalues are distinct.

The corresponding spaces belong to the case iv) of the Classification Theorem.

Moreover, the L5 condition is not satisfied.

4. a = 2c
7 , b = 6c

7 , c 6= 0, k1 = k2 = 0, k3 =
√

5
21 .

The corresponding spaces give the case v) of the Classification Theorem. More-

over, the L5 condition is not satisfied.

P r o o f. Because we can re-numerate the basis {e1, e2, e3} in an arbitrary way
(which implies the corresponding permutation of the symbols a, b, c and the corre-

sponding re-numeration of the parameters k1, k2, k3), the system (11) is symmetric

with respect to all such permutations and re-numerations. Then, in order to solve

this system of equations, we can just consider the following cases:

A. k1k2k3 6= 0,

B. k1 = k2 = 0, k3 arbitrary,

C. k1 = 0 and k2k3 6= 0.

Case A. k1k2k3 6= 0.

We first divide the formulas (1, 1, 2) and (2, 2, 1) by their nonzero coefficients k1k3,

k2k3 and then subtract them. We obtain the necessary condition b− a = 0. Because
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the system (11) is symmetric with respect to all permutations, we get also b− c = 0.

Hence the only possible solution under the condition k1k2k3 6= 0 is a = b = c 6= 0.

Now, we can extend this solution also to the case of arbitrary k1, k2, k3. The

system (11) is still satisfied and we obtain the case 1 of Proposition 2.

In particular, in this case we have the Ricci eigenvalues ̺1 = ̺2 = ̺3 = 1
2a

2,

̺4 = 0 and the curvature tensor (7) takes on the form

R(e1, e2) = −1

4
a2A12, R(e1, e3) = −1

4
a2A13, R(e2, e3) = −1

4
a2A23,

R(e1, e4) = R(e2, e4) = R(e3, e4) = 0.

Moreover, from (6) we get ∇ei
e4 = 0 for i = 1, . . . , 4 and e4 is a (globally) parallel

vector field.

Now, the following lemma is an immediate consequence of the well-known

Ambrose-Singer Theorem.

Lemma 5. On a Riemannian manifold (M, g), the Lie algebra ψ(x) of the

holonomy group Ψ(x) with the reference point x ∈ M (“the holonomy algebra”)

contains the Lie algebra generated by all curvature operators R(X,Y ), where X,Y ∈
TxM .

Using this lemma we see that the holonomy algebra ψ(e) contains span(A12,

A13, A23). On the other hand, the holonomy group Ψ(e) acts trivially on span(e4).

By the de Rham Decomposition Theorem (see Sections 5, 6 of Chapter IV in [8]), the

corresponding Riemannian manifolds are (locally) direct products of a 3-dimensional

Lie group and a real line. They are locally symmetric because the 3-dimensional fac-

tor is a space of constant curvature.

In conclusion, the corresponding spaces belong to the case i) of our Classification

Theorem.

Case B. k1 = k2 = 0, k3 arbitrary.

In this case we have the following system of independent equations:

(1, 2, 3) → (a− b)(2(a− c)(b − c) + c(a+ b− 2c)k2) = 0,(12)

(1, 2, 4) → k(a− b)((2a− c)(2b− c) + c(2a+ 2b− c)k2) = 0,

where we put k = k3. We suppose first that a− b = 0. If a = c also holds, we obtain

a subcase of the case 1 of Proposition 2. Hence, we can assume a = b 6= 0, a 6= c 6= 0,

k1 = k2 = 0 and we obtain the case 2 of Proposition 2.

We want to establish the remaining properties. Mathematica 5.0 shows that this

solution has the Ricci eigenvalues ̺1 = ̺2 = 1
2 (2ac−c2), ̺3 = 1

2c
2, ̺4 = 0. Moreover,
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the basic curvature operators have the following expression:

R(e1, e2) =
1

4
(3c− 4a)cA12, R(e1, e3) = −1

4
c2A13, R(e1, e4) = 0,

R(e2, e3) = −1

4
c2A23, R(e2, e4) = 0, R(e3, e4) = 0.

Then the Lie algebra generated by curvature operators is just span(A12, A13, A23).

Analogously to Case A, we conclude that our spaces are direct products of the 3-

dimensional Lie group of nonconstant curvature and a real line. Hence they are

not locally symmetric. The cyclic parallel condition for the whole space implies the

cyclic parallel condition for the 3-dimensional factor. According to Theorem 1, the

corresponding spaces must be naturally reductive. We obviously obtain the family

from the case ii) of our Classification Theorem.

Assume now that a 6= b. Then we are left with the equations

(1, 2, 3) → (2(a− c)(b − c) + c(a+ b− 2c)k2) = 0,(13)

(1, 2, 4) → k((2a− c)(2b− c) + c(2a+ 2b− c)k2) = 0.

Here we can suppose k 6= 0 because otherwise we get a = c or b = c, which is, up to

a permutation, the case 2 of Proposition 2.

Now, due to c 6= 0, Mathematica 5.0 gives, up to a permutation of the basis, the

unique solution depending on two parameters c and k

(14) a =
c

4

(

3 − 3k2 −
√

1 + 2k2 − 3k4
)

, b =
c

4

(

3 − 3k2 +
√

1 + 2k2 − 3k4
)

.

Here we have the standard inequality k2 < 1 (see the line below the formula (2))

and, due to k 6= 0 and ab 6= 0, we get the range k2 ∈ ]0, 1[ \ { 2
3}. The corresponding

Ricci eigenvalues are

̺1 =
c2

8

(

2 − 6k2 −
√

1 + 2k2 − 3k4
)

,(15)

̺2 =
c2

8

(

2 − 6k2 +
√

1 + 2k2 − 3k4
)

,

̺3 =
c2

16

(

3 − 3k2 −
√

9 − 2k2 + 57k4
)

,

̺4 =
c2

16

(

3 − 3k2 +
√

9 − 2k2 + 57k4
)

.

It is clear that these are functions of two independent variables c, k. Now,Mathemat-

ica 5.0 gives that, due to the assumption k2 ∈ ]0, 1[ \ { 2
3}, we always have ̺1 6= ̺2,

̺2 6= ̺3, ̺1 6= ̺4, ̺2 6= ̺4, ̺3 6= ̺4. But ̺1 = ̺3 can still occur, namely in the case
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when k2 = 5
21 . Then we obtain the cases 3 and 4 of Proposition 2. Now, using (7)

and (8) we obtain, for all values of k, that the space of the curvature operators is

span(A12, A13, A14, A23, A24). Hence the Lie algebra generated by these operators

is so(4). Using Lemma 5 we see that the action of the holonomy algebra on the

tangent space TeG is irreducible and hence the corresponding manifolds are irre-

ducible. Moreover, we can see easily that (∇e4
R)(e4, e2)e4 6= 0 (for all values of k)

and hence the spaces are not locally symmetric. Further, if we put X = e1 +e2+ve4,

where v is a nonzero parameter, Mathematica 5.0 shows that the Ledger condition

L5(X) = 0 can be written in the form ϕ1(c, k) + ϕ2(c, k)v
2 = 0 and, because v is a

free parameter, this implies

ϕ1(c, k) = 59 + 11c2 − 6c3 + (250 − 22c2 + 12c3)k2 + (11c2 − 6c3)k4 = 0,(16)

ϕ2(c, k) = (−262 + 39c)k2 − (260 + 39c)k4 = 0.(17)

If 260 + 39c = 0, the formula (17) leads to a contradiction. Hence 260 + 39c 6= 0

and k2 can be expressed from (17) in the form k2 = −(262 + 39c)/(13(20 + 3c)).

Substituting this into (16), we obtain a cubic equation

(18) 4347200− 392340c− 1155771c2 + 544968c3 = 0.

Mathematica 5.0 says that (18) has only one real solution, namely c = −1.57074 . . .

But this gives a negative value for k2, a contradiction. As a conclusion, we always

have L5(e1 + e2 + ve4) 6= 0 for some v 6= 0, and the corresponding spaces do not

satisfy the Ledger condition L5.

Note that the case 3 is a family with four distinct Ricci eigenvalues and this is an

explicit presentation of the family of spaces described by P. Bueken and L. Vanhecke

only implicitly in [4]. We conclude that our spaces belong to the case iv) of the

Classification Theorem as a generic subfamily. (The exceptional case k2 = 2
3 will be

added later.)

The case 4 with two coinciding Ricci eigenvalues has been presented in [1] as the

only missing family in the Classification Theorem of [13]—see Appendix for more

details. In particular, from this solution we obtain the spaces which give the case v)

of our Classification Theorem.

Case C. k1 = 0 and k2k3 6= 0.

First, we suppose that 2a− b− c 6= 0. Then from the simplified equations (2, 2, 1)

and (3, 3, 1) of (11) we obtain that a = b = c. Hence, the corresponding solution is

a particular subcase of the case 1) of Proposition 2. Supposing 2a − b − c = 0 we
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obtain the following simpler system of equations:

(1, 2, 3) → (a− b)(−4(a− b) − 3bk2
2 + 3(2a− b)k2

3) = 0,

(1, 2, 4) → (a− b)(−4a+ 3b− 3bk2
2 + 3(2a− b)k2

3) = 0,

(1, 3, 4) → (a− b)(−2a+ 3b− 3bk2
2 + 3(2a− b)k2

3) = 0.

If a−b = 0, we conclude immediately that a = b = c. Thus we assume that a−b 6= 0.

Dividing the equations (1, 2, 4) and (1, 3, 4) by the factor (a−b) and subtracting both
remaining equations we obtain the necessary condition a = 0, which is a contradiction

to abc 6= 0. This concludes the proof of Proposition 2. �

2.2. Solvable case

We are going to analyze this case using the following result given by L. Bérard

Bergery in [2]:

Theorem 2. In dimension 4, the solvable and simply connected Lie groups are:

a) the non-trivial semi-direct products E(2)o R and E(1, 1)o R,
b) the non-nilpotent semi-direct products HoR, where H is the Heisenberg group,
c) all semi-direct products R3 o R.
As concerns the semidirect products of the form G = G3oR in the above theorem

and all possible left-invariant metrics on them, we can construct all of them on the

level of Lie algebras as follows: we consider the Lie algebra g3 and the vector space

g = g3 + R. Let {f1, . . . , f4} be any basis of g such that g3 = span{f1, f2, f3},R = span{f4}. Let D be an arbitrary derivation of the algebra g3 and let us define

(19) [f4, fi] = Dfi for i = 1, 2, 3.

(This completes the multiplication table of the algebra g3 to the multiplication table

of g). Then we choose any scalar product 〈, 〉 on g for which {f1, f2, f3} forms an
orthonormal triplet but f4 is just a unit vector which need not be orthonormal to g3.

Thus we have, as in the formula (2), t〈fi, f4〉 = ki, i = 1, 2, 3. Now, all semi-direct

products G3 o R with left-invariant metrics correspond to various choices of the
derivations D of g3 and to all scalar products given by the above rule. The algebra

of all derivations D of g3 will be usually represented in the corresponding matrix

form.

Now, we shall study each of the cases from Theorem 2 separately following the

construction indicated above and preserving the style of Section 2.1.
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2.2.1. Non-trivial semi-direct products E(2)oR. Let e(2) be the Lie algebra

of E(2) with a scalar product 〈, 〉3. Then there is an orthonormal basis {f1, f2, f3}
of e(2) such that

(20) [f2, f3] = γf1, [f3, f1] = −γf2, [f1, f2] = 0

where γ 6= 0 is a real number. The algebra of all derivations D of e(2) is











a b 0

−b a 0

c d 0



 : a, b, c, d ∈ R


when represented in the matrix form.

According to the general scheme, we consider the algebra g = e(2) +R, where the
multiplication table is given by (20) and, according to the general formula (19), also

by

[f4, f1] = af1 + bf2, [f4, f2] = −bf1 + af2, [f4, f3] = cf1 + df2,(21)

〈fi, f4〉 = ki, i = 1, 2, 3.

Here γ 6= 0, a, b, c, d, k1, k2, k3 are arbitrary parameters where
3
∑

i=1

k2
i < 1 due to the

positivity of the scalar product. We exclude the case a = b = c = d = 0, i.e., the

direct product E(2) × R.
This gives rise to a simply connected group space (G = E(2)o R, g).
Now we replace the basis {fi} by a new basis {ei} as in the formula (3). Thus we

get an orthonormal basis for which

[e2, e3] = γe1, [e3, e1] = −γe2, [e1, e2] = 0,(22)

[e4, e1] =
1

R
(ae1 + (b + k3γ)e2), [e4, e2] =

1

R
(−(b + k3γ)e1 + ae2),

[e4, e3] =
1

R
((c+ k2γ)e1 + (d− k1γ)e2).

Next we are going to calculate, in the new basis, the expressions for the Levi-Civita

connection, the curvature tensor, the Ricci matrix, and the condition for the Ricci

tensor to be cyclic parallel.

By an easy calculation we get

Lemma 6.

∇ei
ei =

a

R
e4, i = 1, 2, ∇ei

ei = 0, i = 3, 4, ∇e1
e2 = 0 = ∇e2

e1,(23)

∇e1
e3 =

c+ γk2

2R
e4, ∇e3

e1 = −γe2 +
c+ γk2

2R
e4,
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∇e1
e4 = − a

R
e1 −

c+ γk2

2R
e3, ∇e4

e1 = −c+ γk2

2R
e3 +

b+ γk3

R
e2,

∇e2
e3 =

d− γk1

2R
e4, ∇e3

e2 = γe1 +
d− γk1

2R
e4,

∇e2
e4 = − a

R
e2 −

d− γk1

2R
e3, ∇e4

e2 = −d− γk1

2R
e3 −

b+ γk3

R
e1,

∇e3
e4 = −d− γk1

2R
e2 −

c+ γk2

2R
e1, ∇e4

e3 =
d− γk1

2R
e2 +

c+ γk2

2R
e1.

Similarly to Lemma 2 we can now derive

Lemma 7. The components of the curvature operator are

R(e1, e2) = α1212A12 + α1213A13 + α1223A23,(24)

R(e1, e3) = α1312A12 + α1313A13 + α1323A23 + α1334A34,

R(e1, e4) = α1414A14 + α1424A24 + α1434A34,

R(e2, e3) = α2312A23 + α2313A13 + α2323A23 + α2334A34,

R(e2, e4) = α2414A14 + α2424A24 + α2434A34,

R(e3, e4) = α3413A13 + α3414A14 + α3423A23 + α3424A24 + α3434A34,

where the coefficients αijlm = g(R(ei, ej)el, em) satisfy the standard symmetries with

respect to their indices and

α1212 =
a2

R2
, α1213 =

a(d− γk1)

2R2
, α1223 = −a(c+ γk2)

2R2
, α1313 = − (c+ γk2)

2

4R2
,(25)

α1323 = − (d− γk1)(c+ γk2)

4R2
, α1334 =

γ(−d+ γk1)

2R
, α1414 =

4a2 − (c+ γk2)
2

4R2
,

α1424 = − (d− γk1)(c+ γk2)

4R2
, α1434 =

2a(c+ γk2) + (d− γk1)(b + γk3)

2R2
,

α2323 = − (d− γk1)
2

4R2
, α2334 =

γ(c+ γk2)

2R
, α2424 =

4a2 − (d− γk1)
2

4R2
,

α2434 =
2a(d− γk1) − (c+ γk2)(b+ γk3)

2R2
, α3434 =

3((d− γk1)
2 + (c+ γk2)

2)

4R2
.

Further, we obtain easily

Lemma 8. The matrix of the Ricci tensor of type (1, 1) expressed with respect

to the basis {e1, e2, e3, e4} is of the form

(26)











−4a2+(c+γk2)
2

2R2

(d−γk1)(c+γk2)
2R2 β13

γ(−d+γk1)
2R

(d−γk1)(c+γk2)
2R2

−4a2+(d−γk1)
2

2R2 β23
γ(c+γk2)

2R

β13 β23
−(c+γk2)

2
−(d−γk1)

2

2R2 0
γ(−d+γk1)

2R

γ(c+γk2)
2R

0 β44










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where

β13 =
−3a(c+ γk2) + (−d+ γk1)(b + γk3)

2R2
,

β23 =
3a(−d+ γk1) + (c+ γk2)(b + γk3)

2R2
,

β44 =
−4a2 − (d− γk1)

2 − (c+ γk2)
2

2R2
.

Now we obtain the following analogue of Lemma 4:

Lemma 9. The condition (10) for the Ricci tensor of type (0,2) is equivalent to

the system of algebraic equations

(1, 1, 1) → a(d− γk1) = 0,(27)

(1, 1, 2) → a(c+ γk2) = 0,

(1, 1, 3) → (d− γk1)(c+ γk2) = 0,

(1, 1, 4) → − a(c2 − d2 + γ2(k2
2 − k2

1)) − 2cd(b+ γk3)

− 2γk2(ac+ d(b + γk3)) + 2γk1((c+ γk2)(b + γk3) − ad) = 0,

(3, 3, 1) → − 3a(d− γk1) + (c+ γk2)(b + γk3) = 0,

(3, 3, 2) → 3a(c+ γk2) + (d− γk1)(b + γk3) = 0,

(4, 4, 1) → − a(d− γk1) + (c+ γk2)(b + γk3) = 0,

(4, 4, 2) → a(c+ γk2) + (d− γk1)(b + γk3) = 0,

(1, 2, 3) → (d− γk1)
2 − (c+ γk2)

2 = 0,

(1, 2, 4) → − 2a(d− γk1)(c+ γk2)

+ (c+ γk2 + d− γk1)(c+ γk2 − d+ γk1)(b + γk3) = 0,

(1, 3, 4) → 2a(d− γk1)(b + γk3)

+ (c+ γk2)(−(b+ γk3)
2 + (a2 +R2γ2)) = 0,

(2, 3, 4) → − 2a(c+ γk2)(b + γk3)

+ (d− γk1)(−(b + γk3)
2 + (a2 +R2γ2)) = 0.

Here the symbol “(α, β, γ) →” indicates the substitution of (eα, eβ, eγ) for (X,Y, Z)

respectively.

Now, our goal is to find the values of a, b, c, d, k1, k2, k3 and γ 6= 0 which satisfy

the system of equations (27).
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Proposition 3. The unique solution of the system of algebraic equations (27)

is given by the formula

(28) d = γk1, c = −γk2, γ 6= 0, a, b, k1, k2, k3 arbitrary.

The corresponding spaces belong to the case i) of the Classification Theorem.

P r o o f. From the subsystem of (27) formed by the equations (1, 1, 3) and

(1, 2, 3) we obtain (d− γk1) = (c+ γk2) = 0. Then the remaining equations (27) are

automatically satisfied.

Moreover, according to (26), the corresponding spaces have the Ricci eigenvalues

̺1 = ̺2 = ̺4 = −2a2/R2, ̺3 = 0 and the curvature tensor (24) takes on the form

R(e1, e2) =
a2

R2
A12, R(e1, e4) =

a2

R2
A14, R(e2, e4) =

a2

R2
A24,

R(e1, e3) = R(e2, e3) = R(e3, e4) = 0.

Then either each of the spaces is flat (for a = 0) or the space of the curvature

operators is span(A12, A14, A24). Moreover, from (23) we get ∇ei
e3 = 0 for all

i = 1, . . . , 4 and e3 is a parallel vector field. Using a complete analogue of the proof

in Case A of Proposition 2, we conclude that the corresponding spaces belong to the

case i) of our Classification Theorem. �

2.2.2. Non-trivial semi-direct products E(1, 1) o R. Let e(1, 1) be the Lie

algebra of E(1, 1) with a scalar product 〈, 〉3. Then there is an orthonormal ba-
sis {f1, f2, f3} of e(1, 1) such that

(29) [f2, f3] = γf2, [f3, f1] = γf1, [f1, f2] = 0

where γ 6= 0 is a real number. The algebra of all derivations D of e(1, 1) is











a 0 0

0 a 0

b c 0



 : a, b, c ∈ R


,

when represented in the matrix form.

According to the general scheme, we consider the algebra g = e(1, 1) + R, where
the multiplication table is given by (29) and, according to the general formula (19),

also by

[f4, f1] = af1, [f4, f2] = af2, [f4, f3] = bf1 + cf2,(30)

〈fi, f4〉 = ki, i = 1, 2, 3.
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Here γ 6= 0, a, b, c, k1, k2, k3 are arbitrary parameters where
3
∑

i=1

k2
i < 1, and we

exclude the case a = b = c = 0.

This gives rise to a simply connected group space (G = E(1, 1)o R, g).
Now we replace the basis {fi} by a new basis {ei} as in the formula (3). Then we

get an orthonormal basis for which

[e2, e3] = γe2, [e3, e1] = γe1, [e1, e2] = 0,(31)

[e4, e1] =
1

R
((a− k3γ)e1), [e4, e2] =

1

R
((a+ k3γ)e2),

[e4, e3] =
1

R
((b + k1γ)e1 + (c− k2γ)e2).

Now we are going to calculate, in the new basis, the expressions for the Levi-Civita

connection, the curvature tensor, the Ricci matrix, and the condition for the Ricci

tensor to be cyclic parallel.

By an easy calculation we get

Lemma 10.

∇e1
e1 = γe3 +

(a− γk3)

R
e4, ∇e2

e2 = −γe3 +
(a+ γk3)

R
e4,(32)

∇ei
ei = 0, i = 3, 4, ∇e1

e2 = 0 = ∇e2
e1,

∇e1
e3 = −γe1 +

(b+ γk1)

2R
e4, ∇e3

e1 =
(b+ γk1)

2R
e4,

∇e1
e4 = − (b+ γk1)

2R
e3 +

(−a+ γk3)

R
e1, ∇e4

e1 = − (b+ γk1)

2R
e3,

∇e2
e3 = γe2 +

(c− γk2)

2R
e4, ∇e3

e2 =
(c− γk2)

2R
e4,

∇e2
e4 = − (c− γk2)

2R
e3 −

(a+ γk3)

R
e2, ∇e4

e2 = − (c− γk2)

2R
e3,

∇e3
e4 = − (b+ γk1)

2R
e1 −

(c− γk2)

2R
e2, ∇e4

e3 =
(b+ γk1)

2R
e1 +

(c− γk2)

2R
e2.

Similarly to Lemma 2 we can now derive

Lemma 11. The components of the curvature operator are

R(e1, e2) = α1212A12 + α1213A13 + α1214A14 + α1223A23 + α1224A24,(33)

R(e1, e3) = α1312A12 + α1313A13 + α1314A14 + α1323A23 + α1334A34,

R(e1, e4) = α1412A12 + α1413A13 + α1414A14 + α1424A24 + α1434A34,

R(e2, e3) = α2312A23 + α2313A13 + α2323A23 + α2324A24 + α2334A34,

R(e2, e4) = α2412A12 + α2414A14 + α2423A23 + α2424A24 + α2434A34,

R(e3, e4) = α3413A13 + α3414A14 + α3423A23 + α3424A24 + α3434A34,
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where the coeficients αijlm = g(R(ei, ej)el, em) satisfy the standard symmetries with

respect to their indices and

α1212 =
a2 + γ2(−1 + k2

1 + k2
2)

R2
,(34)

α1213 =
(c− γk2)(a− γk3)

2R2
,

α1214 =
−γ(c− γk2)

2R
,

α1223 =
−(b+ γk1)(a+ γk3)

2R2
,

α1224 =
−γ(b+ γk1)

2R
,

α1313 =
4R2γ2 − (b + γk1)

2

4R2
,

α1314 =
γ(a− γk3)

R
,

α1323 =
(b+ γk1)(−c+ γk2)

4R2
,

α1334 =
γ(b+ γk1)

R
,

α1414 =
4(a− γk3)

2 − (b+ γk1)
2

4R2
,

α1424 =
(b+ γk1)(−c+ γk2)

4R2
,

α1434 =
(b+ γk1)(a− γk3)

R2
,

α2323 =
4R2γ2 − (c− γk2)

2

4R2
,

α2324 =
−γ(a+ γk3)

R
,

α2334 =
γ(−c+ γk2)

R
,

α2424 =
4(a+ γk3)

2 − (c− γk2)
2

4R2
,

α2434 =
(c− γk2)(a+ γk3)

R2
,

α3434 =
3((b+ γk1)

2 + (c− γk2)
2)

4R2
.

Further, we obtain easily
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Lemma 12. The matrix of the Ricci tensor of type (1, 1) expressed with respect

to the basis {e1, e2, e3, e4} is of the form

(35)











β11
(b+γk1)(c−γk2)

2R2

(b+γk1)(−3a+γk3)
2R2

γ(b+γk1)
2R

(b+γk1)(c−γk2)
2R2 β22

−(c−γk2)(3a+γk3)
2R2

γ(−c+γk2)
2R

(b+γk1)(−3a+γk3)
2R2

−(c−γk2)(3a+γk3)
2R2 β33

2γ2k3

R
γ(b+γk1)

2R

γ(−c+γk2)
2R

2γ2k3

R
β44











where

β11 =
(b+ γk1)

2 − 4a(a− γk3)

2R2
,

β22 =
(c− γk2)

2 − 4a(a+ γk3)

2R2
,

β33 = − aR2γ2 + (b + γk1)
2 + (c− γk2)

2

2R2
,

β44 = − a(a2 + γ2k2
3) + (b+ γk1)

2 + (c− γk2)
2

2R2
.

Now we obtain the following analogue of Lemma 4:

Lemma 13. The condition (10) for the Ricci tensor of type (0, 2) is equivalent

to the system of algebraic equations

(1, 1, 1) → a(b + γk1) = 0,(36)

(1, 1, 2) → a(c− γk2) = 0,

(1, 1, 3) → − 4a2 + 4γ2(1 − k2
1 − k2

2) + (b+ γk1)
2 + (c− γk2)

2 = 0,

(1, 1, 4) → − 4γk3(a
2 − γ2(1 − k2

1 − k2
2))

+ (c− γk2)
2(−a+ γk3) + (b+ γk1)

2(a+ γk3) = 0,

(1, 2, 4) → 2a(b+ γk1)(c− γk2) = 0,

(1, 3, 4) → (b + γk1)(a(a+ 4γk3) + 3γ2(k2
3 −R2)) = 0,

(2, 3, 4) → (c− γk2)(a(a− 4γk3) + 3γ2(k2
3 −R2)) = 0,

(3, 3, 1) → (b + γk1)(a+ γk3) = 0,

(3, 3, 2) → (c− γk2)(a− γk3) = 0,

(4, 4, 1) → (b + γk1)(a+ 3γk3) = 0,

(4, 4, 2) → (c− γk2)(−a+ 3γk3) = 0.

Here the symbol “(α, β, γ) →” indicates the substitution of (eα, eβ, eγ) for (X,Y, Z)

respectively.

Now, we have
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Proposition 4. The unique solution of the system of algebraic equations (36)

is, up to a re-numeration of the triplet {e1, e2, e3},

(37) a = γ
√

1 − k2
1 − k2

2 , b = −γk1, c = γk2, γ 6= 0, k1, k2, k3 arbitrary.

The corresponding spaces belong to the case i) of the Classification Theorem.

P r o o f. Suppose first a 6= 0. We obtain the formulas (37) from (1, 1, 1),

(1, 1, 2) and (1, 1, 3). Next we suppose a = 0. Then we obtain from (1, 1, 3) that

1 − k2
1 − k2

2 6 0, which is a contradiction. On the other hand, (36) is automatically

satisfied by the solution (37).

Moreover, the corresponding spaces have the Ricci eigenvalues ̺1 = (−2a2 −
k32γa)R

−2 = ̺3, ̺2 = (−2a2 + k32γa)R
−2 = ̺4. In addition, ∇R = 0, checking by

Mathematica 5.0. A routine computation shows that, in fact, every space is a direct

product M2 ×M ′
2 of spaces of constant curvatures ̺1 and ̺2 (even for k3 = 0 where

̺1 = ̺2). Hence, the corresponding spaces are locally symmetric and they belong to

the case i) of the Classification Theorem. �

2.2.3. Non-nilpotent semi-direct products H oR. Let h be the Lie algebra

ofH (the Heisenberg group) with a scalar product 〈, 〉3. Then there is an orthonormal
basis {f1, f2, f3} of h such that

(38) [f3, f2] = 0, [f3, f1] = 0, [f1, f2] = γf3

where γ 6= 0 is a real number. The algebra of all derivations D of h is











a b h

c d f

0 0 a+ d



 : a, b, c, d, h, f ∈ R


,

when represented in the matrix form.

According to the general scheme, we consider the algebra g = h + R, where the
multiplication table is given by (38) and, according to the general formula (19), also

by

[f4, f1] = af1 + bf2 + hf3, [f4, f2] = cf1 + df2 + ff3,(39)

[f4, f3] = (a+ d)f3, 〈fi, f4〉 = ki, i = 1, 2, 3.

Here γ 6= 0, a, b, c, d, f , h, k1, k2, k3 are arbitrary parameters where
3
∑

i=1

k2
i < 1. We

exclude the nilpotent case a = b = c = d = h = 0. (See [2].)
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This gives rise to a simply connected group space (G = H o R, g).
Now we replace the basis {fi} by the new basis {ei} as in the formula (3). Then

we get an orthonormal basis for which

[e1, e2] = γe3, [e3, e2] = [e3, e1] = 0, [e4, e1] =
1

R
(ae1 + be2 + (h+ k2γ)e3),(40)

[e4, e2] =
1

R
(ce1 + de2 + (f − k1γ)e3), [e4, e3] =

1

R
((a+ d)e3).

Now we are going to calculate, in the new basis, the expressions for the Levi-Civita

connection, the curvature tensor, the Ricci matrix, and the condition for the Ricci

tensor to be cyclic parallel.

By an easy calculation we get

Lemma 14.

∇e1
e1 =

a

R
e4, ∇e2

e2 =
a

R
e4, ∇e3

e3 =
(a+ d)

R
e4, ∇e4

e4 = 0,(41)

∇e1
e2 =

γ

2
e3 +

(b+ c)

2R
e4, ∇e2

e1 = −γ
2
e3 +

(b + c)

2R
e4,

∇e1
e3 = −γ

2
e2 +

(h+ γk2)

2R
e4 = ∇e3

e1, ∇e2
e3 =

γ

2
e1 +

(f − γk1)

2R
e4 = ∇e3

e2,

∇e1
e4 = − a

R
e1 −

(b+ c)

2R
e2 −

(h+ γk2)

2R
e3, ∇e4

e1 =
(b− c)

2R
e2 +

(h+ γk2)

2R
e3,

∇e2
e4 = − (b+ c)

2R
e1 −

d

R
e2 −

(f − γk1)

2R
e3, ∇e4

e2 =
(−b+ c)

2R
e1 +

(f − γk1)

2R
e3,

∇e3
e4 = − (h+ γk2)

2R
e1 −

(f − γk1)

2R
e2 −

(a+ d)

R
e3,

∇e4
e3 = − (h+ γk2)

2R
e1 −

(f − γk1)

2R
e2.

Similarly to Lemma 2 we can now derive

Lemma 15. The components of the curvature operator are

R(e1, e2) = α1212A12 + α1213A13 + α1214A14 + α1223A23(42)

+ α1224A24 + α1234A34,

R(e1, e3) = α1312A12 + α1313A13 + α1314A14 + α1323A23

+ α1324A24 + α1334A34,

R(e1, e4) = α1412A12 + α1413A13 + α1414A14 + α1423A23

+ α1424A24 + α1434A34,
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R(e2, e3) = α2312A23 + α2313A13 + α2314A14 + α2323A23

+ α2324A24 + α2334A34,

R(e2, e4) = α2412A12 + α2413A13 + α2414A14 + α2423A23

+ α2424A24 + α2434A34,

R(e3, e4) = α3412A12 + α3413A13 + α3414A14 + α3423A23

+ α3424A24 + α3434A34,

where the coeficients αijlm = g(R(ei, ej)el, em) satisfy the standard symmetries with

respect to their indices and

α1212 =
4ad+ 3γ2R2 − (b+ c)2

4R2
,(43)

α1213 =
2a(f − γk1) − (b + c)(h+ γk2)

4R2
,

α1214 =
−3γ(h+ γk2)

4R
,

α1223 =
(b+ c)(f − γk1) − 2d(h+ γk2)

4R2
,

α1224 =
3γ(−f + γk1)

4R
,

α1234 =
−(a+ d)γ

2R
,

α1313 =
4a(a+ d) −R2γ2 − (h+ γk2)

2

4R2
,

α1323 =
2(a+ d)(b + c) + (−f + γk1)(h+ γk2)

4R2
,

α1314 =
−(b+ c)γ

4R
,

α1324 =
−dγ
2R

,

α1334 =
γ(f − γk1)

4R
,

α1423 =
aγ

2R
,

α1414 =
4a2 + (3b− c)(b+ c) + 3(h+ γk2)

2

4R2
,

α1424 =
4(ac+ bd) + 3(f − γk1)(h+ γk2)

4R2
,

α1434 =
(b− c)(f − γk1) + 4(a+ d)(h+ γk2)

4R2
,

α2323 =
4d(a+ d) −R2γ2 − (f − γk1)

2

4R2
,
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α2324 =
(b+ c)γ

4R
,

α2334 =
−γ(h+ γk2)

4R
,

α2424 =
−(b− 3c)(b+ c) + 4d2 + 3(f − γk1)

2

4R2
,

α2434 =
4(a+ d)(f − γk1) + (c− b)(h+ γk2)

4R2
,

α3434 =
4(a+ d)2 − (f − γk1)

2 − (h+ γk2)
2

4R2
.

Further, we obtain easily

Lemma 16. The matrix of the Ricci tensor of type (1, 1) expressed with respect

to the basis {e1, e2, e3, e4} is of the form

(44)





















β11 β12 β13
γ(−f + γk1)

2R

β12 β22 β23
γ(h+ γk2)

2R
β13 β23 β33 0

γ(−f + γk1)

2R

γ(h+ γk2)

2R
0 β44





















where

β11 =
−4a(a+ d) − b2 + c2 −R2γ2 − (h+ γk2)

2

2R2
,

β12 =
(−f + γk1)(h+ γk2) − a(b+ 3c) − d(3b+ c)

2R2
,

β13 = c(f−γk1)−(2a+3d)(h+γk2)
2R2 ,

β22 =
b2 − c2 − 4d(a+ d) −R2γ2 − (f − γk1)

2

2R2
,

β23 =
(3a+ 2d)(−f + γk1) + b(h+ γk2)

2R2
,

β33 =
−4(a+ d)2 +R2γ2 + (f − γk1)

2 + (h+ γk2)
2

2R2
,

β44 =
−(b+ c)2 − 4((a+ d)2 − ad) − (f − γk1)

2 − (h+ γk2)
2

2R2
.

Now we obtain the following analogue of Lemma 4:

227



Lemma 17. The condition (10) for the Ricci tensor of type (0, 2) is equivalent

to the system of algebraic equations

(1, 1, 1) → a(f − γk1) = 0,(45)

(1, 1, 2) → (b+ c)(f − γk1) − a(h+ γk2) = 0,

(1, 1, 3) → a(b+ 3c) + (3b+ c)d = 0,

(1, 1, 4) → c(b(a− 3d) − c(a+ d) − (f − γk1)(h+ γk2))

+ a(4d2 −R2γ2 + (f − γk1)
2) = 0,

(1, 2, 3) → 2a2 + b2 − c2 − 2d2 = 0,

(1, 2, 4) → − (b − c)(a− d)(a + d) + 4(b+ c)(bc− ad) − (b+ c)R2γ2

+ b(f − γk1)
2 + c(h+ γk2)

2 + (a+ d)(−f + γk1)(h+ γk2) = 0,

(1, 3, 4) → (a(b+ 4c) + d(3b + 2c))(−f + γk1)

+ (c(3b+ 2c) − 4a(a− 2d) + d2)(h+ γk2) = 0,

(2, 2, 1) → d(f − γk1) − (b+ c)(h+ γk2) = 0,

(2, 2, 2) → d(h+ γk2) = 0,

(2, 2, 4) → − b2(a+ d) + bc(d− 3a) + d(4a2 −R2γ2)

+ (d(h+ γk2) + b(−f + γk1))(h+ γk2) = 0,

(2, 3, 4) → (a2 + b(2b+ 3c) − 4d(2a+ d))(f − γk1)

− (a(2b+ 3c) + d(4b + c))(h+ γk2) = 0,

(3, 3, 1) → (2a+ d)(−f + γk1) + b(h+ γk2) = 0,

(3, 3, 2) → c(−f + γk1) + (a+ 2d)(h+ γk2) = 0,

(3, 3, 4) → a(b+ c)2 + d((b + c)2 − 4a(a+ d) − h2) + (a+ d)R2γ2

+ h(b+ c)(f − γk1) − a(f − γk1)
2

+ γk2((b + c)(f − γk1) − d(γk2 + 2h)) = 0,

(4, 4, 1) → a(−f + γk1) + c(h+ γk2) = 0,

(4, 4, 2) → b(−f + γk1) + d(h+ γk2) = 0.

Here the symbol “(α, β, γ) →” indicates the substitution of (eα, eβ, eγ) for (X,Y, Z)

respectively.

Now, our goal is to find the values of a, b, c, d, f , h, k1, k2, k3 and γ 6= 0 which

satisfy this system of equations and to study each of these cases.

Proposition 5. The only possible solutions of the system of algebraic equa-

tions (45) are, up to a re-numeration of the triplet {e1, e2, e3}, the following ones:
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1. a = b = c = d = 0, γ 6= 0, h 6= 0, f , k1, k2, k3 arbitrary.

2. a = d = 0, b = −c 6= 0, h = −γk2, f = γk1, γ 6= 0, k1, k2, k3 arbitrary.

In these two cases, the corresponding spaces are Riemannian direct products

M3 × R, which are not locally symmetric. Hence, they give the case ii) of the
Classification Theorem.

3. a = d = 1
2γR, b = −c, h = −γk2, f = γk1, γ 6= 0, k1, k2, k3 arbitrary.

In this situation, the corresponding spaces are irreducible Riemannian manifolds

with all Ricci eigenvalues equal to − 3
2γ

2. Hence, the corresponding spaces

belong to the case i) of the Classification Theorem.

4. a = −d, d2 6 1
4γ

2R2, b = c = 1
2

√

−4d2 + γ2R2, h = −γk2, f = γk1, γ 6= 0, k1,

k2, k3 arbitrary.

In this situation, the corresponding spaces are irreducible Riemannian mani-

folds, not locally symmetric, with the Ricci eigenvalues ̺1 = ̺2 = ̺4 = − 1
2γ

2,

̺3 = 1
2γ

2. Moreover, they give the case iii) of the Classification Theorem and

the L5 condition is not satisfied.

P r o o f. Let first b + 3c 6= 0, then from (1,1,3) we get a = −(3b+ c)d/(b+ 3c)

and after substitution into (1,2,3) we obtain (b2 − c2)(16d2 + (b + 3c)2) = 0. Hence

b2 = c2 and from (1,2,3) it follows that a2 = d2. But, if b = ±c, we get from (1,1,3)
that a = ∓d.
If b + 3c = 0, we get from (1,1,3) that d(3b + c) = 0, i.e., 8dc = 0. If c = 0, then

b = 0 and we get again a2 − d2 = 0. If d = 0, then from (1,2,3) we obtain a = 0,

c = b = 0. In conclusion, we only have to study the cases a = ±d, b = ∓c.
Case A. a = d, b = −c.
In this case, the system (45) simplifies to

(1, 1, 1) → d(f − γk1) = 0,(46)

(1, 1, 2) → d(h+ γk2) = 0,

(1, 1, 4) → d(4d2 − γ2(1 − k2
1 − k2

2 − k2
3) = 0,

(3, 3, 1) → c(h+ γk2) = 0,

(1, 1, 2) → c(f − γk1) = 0.

Now, first we suppose that d = 0. Then, if c = 0, we obtain the case 1 of

Proposition 5 (note that h 6= 0 because otherwise we would have the nilpotent semi-

direct product) and, if c 6= 0, we obtain the case 2 of Proposition 5.

In both the cases 1 and 2 we obtain (∇e1
R)(e1, e2)e1 = 1

2γR
−2(h2 + 2γk2h +

γ2(1 − k2
1 − k2

3))e3 6= 0 and the corresponding spaces are not locally symmetric.

Further, put X = ((−f +γk1)/Rγ)e1 +((h+γk2)/Rγ)e2 + e4. Then we check easily

that ∇ei
X = 0 for i = 1, 2, 3, 4 and X is (globally) parallel. Hence the action of
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the holonomy group Ψ(e) is trivial on the 1-dimensional subspace span(X) ⊂ TeG.

Consequently, according to the de Rham theorem, we have (G, g) = M3 × R when
M3 is not locally symmetric (and hence irreducible). According to Theorem 1,M3 is

naturally reductive and we obtain the case ii) of our Classification Theorem.

On the other hand, if d 6= 0, it is clear from (46) that f = γk1, h = −γk2 and

(1, 1, 4) → d(4d2 − γ2(1 − k2
1 − k2

2 − k2
3)) = 0.

Hence, we obtain the case 3 of Proposition 5. From Lemma 16 we see that we have

four coinciding Ricci eigenvalues − 3
2γ

2. Then the corresponding spaces are Einstein

and by a well-known theorem of G.R. Jensen (see [7]) they are locally symmetric.

Hence, they belong to the case i) of our Classification Theorem.

Case B. a = −d, b = c.

In this case, the system (45) is reduced to

(1, 1, 1) → d(f − γk1) = 0,(47)

(1, 1, 4) → d(4c2 + 4d2 − γ2(1 − k2
1 − k2

2 − k2
3)) = 0,

(1, 2, 4) → c(4c2 + 4d2 − γ2(1 − k2
1 − k2

2 − k2
3)) = 0,

(2, 2, 2) → d(h+ γk2) = 0,

(3, 3, 1) → c(h+ γk2) = 0,

(3, 3, 2) → c(f − γk1) = 0.

Note that if we suppose that (−f+γk1) 6= 0 or (h+γk2) 6= 0, we obtain a particular

subcase of the case 1. Hence, we can suppose that f = γk1 and h = −γk2. Thus,

we obtain only two non-equivalent solutions: either c = d = 0, which is a particular

subcase of the case 1, or the case 4 of Proposition 5. In the case 4 we have the Ricci

eigenvalues ̺1 = ̺2 = ̺4 = − 1
2γ

2, ̺3 = 1
2γ

2, and the corresponding spaces are not

locally symmetric due to (∇e1
R)(e1, e2)e3 6= 0. Now, using (42) and (43), we obtain

that the space of the curvature operators is spanned by the five operators A12, A13,

A14, A23, A24. Hence the Lie algebra generated by these operators is so(4). We see

that the action of the holonomy algebra on the tangent space TeG is irreducible and

hence the corresponding Riemannian manifolds are irreducible. Now, we make the

following change of the basis:

e′1 =
2

γ
e4, e′2 = e1 cos(α) + e2 sin(α),(48)

e′3 = −e1 sin(α) + e2 cos(α), e′4 = γe3,

where α is an angle satisfying d sin(2α) + b cos(2α) = 0. (In particular, we should

put α = 0 if b = 0 and α = 3
4π if d = 0). Then the multiplication table for the new
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basis {e′1, e′2, e′3, e′4} (when using (40)) becomes exactly the same as in the case iii)
of our Classification Theorem. We only have to change notation. The corresponding

metric is also in accordance with the case iii). What remains is to prove that the

condition L5 is not satisfied.

Further, if we put X = e2 + ve4 where v is a nonzero parameter, Mathematica 5.0

shows that the Ledger condition L5(X) = 0 can be written in the form

ϕ1(b, d) + ϕ2(b, d)v
2 + ϕ3(b, d)v

4 = 0

and, because v is a free parameter, this implies

ϕ1(b, d) = − 1020 + 364b+ 468d− 252bd+ (20 − 13b+ 30d+ 8bd)4d2(49)

− (61 + 15b− 21d− 14bd)4b2 = 0,

ϕ2(b, d) = 3564 − 1208b+ 604d− 396bd− (140 + 17b+ 16d− 8bd)4d2(50)

− (51 + 3b+ 7d− 13bd)4b2 = 0,

ϕ3(b, d) = − 16 − 14b− 36d− 18bd− (4 + b− d)2d2(51)

+ (3 + b+ d)4b2 = 0.

Mathematica 5.0 affirms that these equations have no common solution. Hence the

corresponding spaces do not satisfy the Ledger condition L5 for some value v 6= 0

and thus, they cannot be D’Atri spaces. This concludes the proof of Proposition 5.

�

2.2.4. Semi-direct products R3 o R. Let r3 be the Lie algebra of R3 with a

scalar product 〈, 〉3. The algebra of all derivations D of r3 is gl(3,R). This means
that the matrix form of D depends on 9 arbitrary parameters with respect to any

fixed orthonormal basis of r3. Moreover, if D is fixed, then we can make three

convenient rotations in the coordinate planes to obtain a particular orthonormal

basis {f1, f2, f3} for which the matrix form of D is the sum of a diagonal matrix and
a skew-symmetric matrix. In other words, we have the general matrix form

D :











a b c

−b f h

−c −h p



 : a, b, c, f, h, p ∈ R


depending just on 6 parameters. Moreover, we have

(52) [f1, f2] = 0, [f1, f3] = 0, [f2, f3] = 0.
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According to the general scheme, we consider the algebra g = r3 + R, where the
multiplication table is given by (52) and

[f4, f1] = af1 + bf2 + cf3, [f4, f2] = −bf1 + ff2 + hf3,(53)

[f4, f3] = −cf1 − hf2 + pf3, 〈fi, f4〉 = ki, i = 1, 2, 3.

Here a, b, c, f , h, p, k1, k2, k3 are arbitrary parameters where
3
∑

i=1

k2
i < 1.

This gives rise to a simply connected group space (G = R3 o R, g).
Now we replace the basis {fi} by a new basis {ei} as in the formula (3). Then we

get an orthonormal basis for which

[e1, e2] = 0, [e1, e3] = 0 [e2, e3] = 0, [e4, e1] =
1

R
(ae1 + be2 + ce3),(54)

[e4, e2] =
1

R
(−be1 + fe2 + he3), [e4, e3] =

1

R
(−ce1 − he2 + pe3).

Now we are going to calculate, in the new basis, the expressions for the Levi-Civita

connection, the curvature tensor, the Ricci matrix, and the condition for the Ricci

tensor to be cyclic parallel.

By an easy calculation we get

Lemma 18.

∇e1
e1 =

a

R
e4, ∇e2

e2 =
f

R
e4, ∇e3

e3 =
p

R
e4, ∇e4

e4 = 0,(55)

∇e1
e2 = 0 = ∇e2

e1, ∇e1
e3 = 0 = ∇e3

e1, ∇e2
e3 = 0 = ∇e3

e2,

∇e1
e4 = − a

R
e1, ∇e4

e1 =
b

R
e2 +

c

R
e3, ∇e2

e4 = − f

R
e2,

∇e4
e2 = − b

R
e1 +

h

R
e3, ∇e3

e4 = − p

R
e3, ∇e4

e3 = − c

R
e1 − h

R
e2.

Similarly to Lemma 2 we can now derive

Lemma 19. The components of the curvature operator are

R(e1, e2) =
af

R2
A12, R(e1, e4) =

a2

R2
A14 +

b(f − a)

R2
A24 +

c(p− a)

R2
A34,(56)

R(e1, e3) =
ap

R2
A13, R(e2, e4) =

b(f − a)

R2
A14 +

f2

R2
A24 +

h(p− f)

R2
A34,

R(e2, e3) =
fp

R2
A23, R(e3, e4) =

c(p− a)

R2
A14 +

h(p− f)

R2
A24 +

p2

R2
A34.

Further, we obtain easily
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Lemma 20. The matrix of the Ricci tensor of type (1, 1) expressed with respect

to the basis {e1, e2, e3, e4} is of the form

(57)

























−a(a+ f + p)

R2

b(a− f)

R2

c(a− p)

R2
0

b(a− f)

R2
−f(a+ f + p)

R2

h(f − p)

R2
0

c(a− p)

R2

h(f − p)

R2
−p(a+ f + p)

R2
0

0 0 0 −a
2 + f2 + p2

R2

























.

Now we obtain the following analogue of Lemma 4

Lemma 21. The condition (10) for the Ricci tensor of type (0, 2) is equivalent

to the system of algebraic equations

(1, 1, 4) → − (f + p)a2 + (f − a)b2 + (p− a)c2 + a(f2 + p2) = 0,(58)

(1, 2, 4) → (a+ f − 2p)ch+ (a− f)bp = 0,

(1, 3, 4) → (p− a)cf + (a− 2f + p)bh = 0,

(2, 2, 4) → (a− f)b2 − (a+ p)f2 + (p− f)h2 + f(a2 + p2) = 0,

(2, 3, 4) → (f + p− 2a)bc+ (f − p)ah = 0.

Here the symbol “(α, β, γ) →” indicates the substitution of (eα, eβ, eγ) for (X,Y, Z)

respectively.

Now, our goal is to find the values of a, b, c, f , h, p, k1, k2, k3 which satisfy this

system of equations and to study each of these cases. Here Mathematica 5.0 offers

just 21 formally different solutions. But, using various numerations and various signs

of the vectors e1, e2, e3, we see easily that most of the solutions are to one another

equivalent, and we can reduce the number of essentially different solutions to five.

Then we get

Proposition 6. The only possible solutions of the system of algebraic equa-

tions (58) are, up to a re-numeration of the triplet {e1, e2, e3}, the following ones:
1) p = f = a, a, b, c, h, k1, k2, k3 arbitrary.

2) b = c = f = p = 0, a, h, k1, k2, k3 arbitrary.

3) a = b = c = 0, p = f , f , h, k1, k2, k3 arbitrary.

4) c = h = p = 0, b = f = −a, a 6= 0, k1, k2, k3 arbitrary.

5) b = 1
3a, c = −h = 4

3a, f = −a, p = 0, a 6= 0, k1, k2, k3 arbitrary.
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For the solution 1) we obtain from (57) that all four Ricci eigenvalues are equal

to −3a2/R2. Then the corresponding spaces are Einstein and by [7] they are locally

symmetric. Hence, they belong to the case i) of the Classification Theorem.

For the solution 2) we obtain from (57) that the corresponding spaces have the

Ricci eigenvalues ̺1 = ̺4 = −a2/R2, ̺2 = ̺3 = 0. From (55) we see that the

distribution span(e2, e3) is parallel and hence the holonomy group Ψ(e) acts trivially

on it. From the de Rham theorem we see that each space is a direct productM2×R2 ,

where M2 is of constant curvature ̺1. Hence, the corresponding spaces are locally

symmetric and they belong to the case i) of our Classification Theorem.

For the solution 3) we obtain from (57) that the Ricci eigenvalues are ̺1 = 0,

̺2 = ̺3 = ̺4 = −2f2/R2 and from (56) that the curvature tensor takes on the form

R(e2, e3) =
f2

R2
A23, R(e2, e4) =

f2

R2
A24, R(e3, e4) =

f2

R2
A34,

R(e1, e2) = R(e1, e3) = R(e1, e4) = 0.

We see that each of the spaces is either flat (for f = 0) or it is a direct product

M3 ×R where M3 is a space of constant curvature. In the latter case, the argument

is exactly the same as in Case A of Proposition 2. The corresponding spaces belong

to the case i) of our Classification Theorem.

Under the hypothesis of the solution 4) we obtain from (57) that the Ricci eigen-

values are ̺1 = ̺4 = −2a2/R2, ̺2 = 2a2/R2, ̺3 = 0. Besides, it is easy to check

that (∇e1
R)(e1, e2)e1 6= 0 and the curvature tensor (56) takes on the form

R(e1, e2) = − a2

R2
A12, R(e1, e3) = 0, R(e1, e4) =

a2

R2
(A14 + 2A24),

R(e2, e3) = 0, R(e2, e4) =
a2

R2
(2A14 +A24), R(e3, e4) = 0.

Then the space of the curvature operators is obviously spanned by the three op-

erators A12, A14, A24. In addition, ∇ei
e3 = 0 for all i = 1, . . . , 4. Consequently,

according to Lemma 5 and the de Rham theorem the corresponding manifolds are

(not locally symmetric) Riemannian direct productsM3×R. Moreover, according to
Theorem 1,M3 is naturally reductive and we obtain the case ii) of our Classification

Theorem.

Finally, we shall study the solution 5). We obtain from (57) that we have here

four distinct Ricci eigenvalues

̺1 =
−2a2

3R2
, ̺2 =

a2(1 −
√

33)

3R2
, ̺3 =

a2(1 +
√

33)

3R2
, ̺4 =

−2a2

R2
.
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Now, let us introduce a new basis {e′1, e′2, e′3, e′4} by

e′1 = −R
√

3

4a
e4, e′2 = − R

√
3

4a
√

2
(e2 − e1),

e′3 = − R

4a
√

2
(e1 + e2 + 2e3), e′4 = − R

4a
√

3
(2e1 + 2e2 + e3).

Here 〈e′i, e′i〉 = 3
16R

2/a2 for i = 1, 2, 3, 4, the triplet {e′1, e′2, e′3} is orthogonal,
〈e′3, e′4〉 = 3

16

√

2
3R

2/a2 and 〈e′i, e′4〉 = 0 for i = 1, 2. Using the multiplication

table (54) and the assumptions of the case 5 of Proposition 6, we obtain a new

multiplication table

(59) [e′1, e
′

2] = e′3, [e′1, e
′

3] =
1

2
e′2, [e′2, e

′

3] = [e′4, e
′

1] = [e′4, e
′

2] = [e′4, e
′

3] = 0.

Now, if we compare this multiplication table and the scalar products 〈e′i, e′j〉 with
the multiplication table and the family of metrics, g(c,k), in the case iv) of the Clas-

sification Theorem, we see that this is exactly the subcase where k2 = 2
3 and the

parameter c in the metric is equal to −4a/(R
√

3). Notice that it is the particular

subcase which was omitted in the case 3 of Proposition 2 for a rather formal reason

that it was not generated on a non-solvable group G3 × R.
3. Appendix

In [13], F. Podestà and A. Spiro published the following classification theorem.

Theorem 3. Let (M, g) be a 4-dimensional curvature homogeneous Rieman-

nian manifold of type A, not Einstein, with at most three distinct Ricci principal
curvatures. Then just one of the following cases occurs:

a) M is locally symmetric;

b) (M, g) is locally isometric to a Riemannian product M3 × R, where M3 is a

3-dimensional Riemannian space with two distinct Ricci curvatures (̺1, ̺2 =

̺1, ̺3), ̺3 6= ̺1: M
3 is the total space of a Riemannian submersion over a sur-

face N of constant curvature ̺1 +̺3; the fibres of this submersion are geodesics

and the integrability tensor A of the submersion is given by
√

2̺3w, where w is

the area form of N ;

c) (M, g) is locally isometric to the simply connected Lie group (G, ga), whose Lie

algebra g is described by

[e1, e2] = −e2, [e1, e3] = e3, [e2, e3] = e4,

[e1, e4] = [e2, e4] = [e3, e4] = 0,
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endowed with the left-invariant metric ga (a ∈ R+ ),

ga =
1

a2
w1 ⊗ w1 + w2 ⊗ w2 + w3 ⊗ w3 + 4a2w4 ⊗ w4,

{wi} being the dual basis of {ei}. The metrics ga have Ricci eigenvalues ̺1 =

̺2 = ̺3 = −2a2, ̺4 = −̺1 = 2a2 and are not isometric to one another for

different values of a. Moreover, the Riemannian manifolds (G, ga) are irreducible

and not locally symmetric.

We are going to compare this theorem with our Classification Theorem. The

case c) of Theorem 3 is exactly the case iii) of our Classification Theorem. It suffices

to put a = γ/2. Also, applying Theorem 1 to the direct product M3 × R we can
see that the case b) of Theorem 3 coincides with the case ii) of our Classification

Theorem (and it is simplified herewith). (See also [4].) On the other hand, as we

have claimed in [1], Theorem 3 is incomplete because the case v) of our Classification

Theorem is missing there.

When the new family of examples was found, we contacted A. Spiro and F. Podestà

who confirmed us that there was really a gap in the paper [13] and they asked the

present authors kindly to publish the following Erratum: the formula on page 236,

line 11, should read correctly

d2
34(d

3
12 − d3

21) − d3
24(d

2
13 − d2

31) = d2
34

(

d3
12

(

1 − ̺2 − ̺4

̺3 − ̺4

)

− 2d2
31

̺2 − ̺4

̺3 − ̺4

)

= 0.

Several weeks later they sent us a detailed and complete correction of the paper [13]

where they recovered the case v) of our Classification Theorem—in a bit different but

still equivalent form. Also, they concluded that it was the only missing family. The

present authors reproduce here (with some cosmetic changes) the detailed erratum

done by F. Podestà and A. Spiro, with their kind consent.

Erratum (February 26, 2005). Let (M, g) be a 4-dimensional Riemannian mani-

fold with constant Ricci principal curvatures ̺i, i = 1, . . . , 4 such that ̺1 = ̺2 and

̺2, ̺3, ̺4 are all distinct. Let {ei}i=1,...,4 be a fixed set of vector fields which gives

an orthonormal frame at any point of M such that the Ricci tensor S is diagonal in

such a frame, i.e. S(ei, ej) = ̺iδij . Finally, we denote by d
k
ij the Christoffel symbols

of the Levi-Civita connection with respect to the frame field {ei}i=1,...,4, i.e. the

smooth functions dk
ij = g(∇ei

ej , ek). Notice that dk
ij = −dj

ik by orthonormality of

the frame field {ei}i=1,...,4. The gap in the proof of Theorem 3 concerns the analysis

of Subcase 1.1 of class A (see p. 234 of [13]).
Under the hypothesis of Subcase 1.1 of [13], there exists an orthonormal frame field

{ei}i=1,...,4 in a neighborhood of any point p ∈ M such that dk
ij are all vanishing
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except for the following functions:

d1
32 = −d2

31 = −A, d3
21 = −d1

23 =
̺4 − ̺2

̺4 − ̺3
A, d3

12 = −d2
13 = −̺4 − ̺2

̺4 − ̺3
A,(60)

d4
32 = −d2

34 = f, d4
23 = −d3

24 = −̺2 − ̺4

̺3 − ̺4
f,

where A, f are smooth functions, A > 0 and f nonzero.

Now, we consider the Jacobi identity

[e1, [e3, e4]] + [e3, [e4, e1]] + [e4, [e1, e3]] = 0

and the inner product of both sides with the vector field e3. After that, we write

each Lie bracket by means of the identities

[ei, ej ] = ∇ei
ej −∇ej

ei = (dk
ij − dk

ji)ek,

obtaining from the previous claim that

(d3
12 − d3

21)d
2
34 + (−d3

24)(d
2
13 − d2

31) = fA
̺4 − ̺2

̺4 − ̺3

(

3 − ̺4 − ̺2

̺4 − ̺3

)

= 0.

Since ̺i − ̺j 6= 0 for any i, j = 2, 3, 4, we immediately get the following necessary

relation between the Ricci eigenvalues ̺i:

(61)
̺4 − ̺2

̺4 − ̺3
= 3 or, equivalently, 2̺4 + ̺2 − 3̺3 = 0.

On the other hand, A, ̺i and f must satisfy the relations (3.2) of [13], i.e. the

expressions which give the components of the Ricci curvature tensor in terms of

the Christoffel symbols dk
ij . Substituting the expressions (60) and (61) into those

relations, we get that A, ̺i and f satisfy the equations

̺1 = ̺2 = −2
̺4 − ̺2

̺4 − ̺3
A2 = −6A2, ̺3 = 2

(̺4 − ̺2

̺4 − ̺3

)2

A2 = 18A2,(62)

̺4 = 2
̺4 − ̺2

̺4 − ̺3
f2 = 6f2.

From (62) it follows immediately that A and f = d4
32 are constants and, chang-

ing e4 into −e4, there is no loss of generality if we assume that f > 0. Moreover,

substituting (62) into (61), we obtain that

(63) f =
√

5A and hence that ̺4 = 30A2.
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According to (60), all Christoffel symbols are constant and the vector fields ei, i =

1, 2, 3, 4, generate a 4-dimensional Lie algebra g whose Lie brackets can be easily

computed as follows:

[e1, e2] = −6Ae3, [e1, e3] = 2Ae2, [e1, e4] = 0,(64)

[e2, e3] = −2Ae1 − 4A
√

5e4, [e2, e4] = 3A
√

5e3, [e3, e4] = −A
√

5e2.

We constructed a new family of spaces of class A and, obviously, this is the only
missing family in our Theorem 2 in [13].

Now, let us introduce a new basis {e′1, e′2, e′3, e′4} by

e′1 = − 1

2
√

21A
e2, e′2 = − 1

2
√

21A
e3,

e′3 = − 1

42A

(

e1 + 2
√

5e4
)

, e′4 = −
√

21

126A

(
√

5e1 − 2e4
)

.

Here 〈e′i, e′i〉 = 1
84A

−2 for i = 1, 2, 3, 4, the triplet {e′1, e′2, e′3} is orthogonal, 〈e′3, e′4〉 =

1
84A

−2
√

5
21 and 〈e′i, e′4〉 = 0 for i = 1, 2. Using the multiplication table (64) we

obtain a new multiplication table

[e′1, e
′

2] = e′3, [e′3, e
′

1] =
6

7
e′2, [e′2, e

′

3] =
2

7
e′1,(65)

[e′4, e
′

1] = [e′4, e
′

2] = [e′4, e
′

3] = 0.

Now, if we compare this multiplication table and the scalar products 〈e′i, e′j〉 with the
multiplication table and the family of metrics, gc, in the case v) of the Classification

Theorem, we see that we obtain exactly the same family of spaces via the substitution

c = −2
√

21A.

Therefore, the classification by F. Podestà and A. Spiro should be now corrected

as follows:

Theorem 4. Let (M, g) be a 4-dimensional curvature homogeneous Riemannian

manifold of type A, not Einstein, with at most three distinct Ricci principal curva-
tures. Then just one of the following cases holds: a) (M, g) is locally symmetric, or

one of the cases b), c) from Theorem 3 occurs, or the case d), namely the family

described in the case v) of the Classification Theorem from Section 1 occurs.

Note that, in the case of at most three distinct Ricci eigenvalues, the corrected

result by Podestà and Spiro is stronger than our classification result because the

homogeneity is replaced by the weaker assumption of curvature homogeneity.
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