Article
Keywords:
global differentiability of weak solutions; elliptic problems; controlled growth; nonlinearity with $q=2$
Summary:
Let $\Omega $ be a bounded open subset of $\mathbb{R}^{n}$, $n>2$. In $\Omega $ we deduce the global differentiability result \[ u \in H^{2}(\Omega , \mathbb{R}^{N}) \] for the solutions $u \in H^{1}(\Omega , \mathbb{R}^{n})$ of the Dirichlet problem \[ u-g \in H^{1}_{0}(\Omega , \mathbb{R}^{N}), -\sum _{i}D_{i}a^{i}(x,u,Du)=B_{0}(x,u,Du) \] with controlled growth and nonlinearity $q=2$. The result was obtained by first extending the interior differentiability result near the boundary and then proving the global differentiability result making use of a covering procedure.
References:
[1] S. Campanato:
Equazioni ellittiche del $II^{\circ }$ ordine e spazi $L^{2,\lambda }$. Ann. Mat. Pura App. 69 (1965), 321–382. (Italian)
DOI 10.1007/BF02414377 |
MR 0192168
[2] S. Campanato:
Sistemi ellittici in forma di divergenza. Quad. Scuola Normale Superiore Pisa (1980). (English)
MR 0668196
[3] S. Campanato:
Differentiability of the solutions of nonlinear elliptic system with natural growts. Ann. Mat. Pura Appl., 4. Ser. 131 (1982), 75–106.
DOI 10.1007/BF01765147 |
MR 0681558
[5] S. Campanato, P. Cannarsa:
Differentiability and partial Hölder continuity of the solutions of non linear elliptic systems of order $2m$ with quadratic growth. Ann. Sc. Norm. Super. Pisa Cl. Sci., IV. Ser. 8 (1981), 285–309.
MR 0623938