Czechoslovak Mathematical Journal

Luisa Fattorusso
A global differentiability result for solutions of nonlinear elliptic problems with

controlled growths
Czechoslovak Mathematical Journal, Vol. 58 (2008), No. 1, 113-129

Persistent URL: http://dml.cz/dmlcz/128249

Terms of use:

© Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/128249
http://dml.cz

Czechoslovak Mathematical Journal, 58 (133) (2008), 113-129

A GLOBAL DIFFERENTIABILITY RESULT FOR SOLUTIONS
OF NONLINEAR ELLIPTIC PROBLEMS
WITH CONTROLLED GROWTHS

LuisA FATTORUSSO, Calabria

(Received December 2, 2005)

Abstract. Let Q be a bounded open subset of R", n > 2. In Q we deduce the global
differentiability result
uwe H2(Q,RY)

for the solutions u € H'(Q, R™) of the Dirichlet problem

u—g € Hy(Q,RY),
— Z Diai(x,u, Du) = Bo(x, u, Du)

K2

with controlled growth and nonlinearity ¢ = 2.

The result was obtained by first extending the interior differentiability result near the
boundary and then proving the global differentiability result making use of a covering
procedure.

Keywords: global differentiability of weak solutions, elliptic problems, controlled growth,
nonlinearity with ¢ = 2
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1. INTRODUCTION

Let € be a bounded open set in R®, n > 2, for instance of class C? with points
x = (21,T2,...,Tp).

We denote by dg the diameter of . N is an integer > 1, (+|-)x and | - ||, are the
scalar product and the norm in R¥, respectively. We will drop the subscript k& when
there is no fear of confusion.

1 This argumentation is obviously modified if n = 2.
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Ifu: Q© — RN, we set Du= (Dyu,..., D,u) where, as usual, D; = §/0x;; clearly
Du € R™™ and we denote by p = (p*,...,p"), p’ € RY, a typical vector of R*V.
H* = H*2 and HY = H}"® are the usual Sobolev spaces (k integer > 0).2

Let us consider the variational elliptic nonlinear system

(1.1) - Z D;a’(z,u, Du) = By(x,u, Du).
i=1
We suppose that
(1.2) a*(x,u,p), Vi=1,2,...,n, are vectors of class C*(Q, R, R*V) such that

a'(z,u,0)=0 Ve YweRY, Vi=1,2,....n

[l oot

quH\M V(z,u,p) € A=Qx RY x R*N,
8uk

Vz,]—l,Q,...,n, Vk=1,2,...,N

7

where M is a suitable positive constant;

da'(z,u,p) ; .
—|| < « J =
2 < @)+ e ul +;np | Vis=1.2....m,

S

o' (., p)] + |

V(x,u,p) € A with a <

i 5 and f € L*(Q);

(1.3) there exist a positive constant v such that

Zzaah DD el S Ul Y (wup) € A, VE € RN

.7 h,k

(1.4) the vector BY(x,u,p) defined in A is measurable in x, continuous in (u,p) and
satisfies the following condition V (z,u,p) € A:

150 < folo) + 0 { Il + 3 1271

where fo € L?(Q), « < n/(n —2) and c is a positive constant.

Condition (1.2) is considered only for the sake of simplicity. In fact if a’(x, u,0)
is different from zero, we can consider the operator @ = a‘(z,u,p) —a'(x,u,0)
instead of a’(z,u,p) and we add the term a’(x,u,0) to Bo(x,u, Du).

2 qHO(Q) = L?(Q).
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From (1.2) it easily follows that V (z,u,p) € A, Vi=1,2,...,n we have
(1.5) la’ (2, u, p)|| < Mpl|.

A solution of system (1.1) in 2 is a vector u € H*(2, RY) such that
(1.6) / Z(ai(ﬂmu,Du)’Diap) dz = / (B®|p)dz Vo € Hy(Q,RY).
Q“; Q

In this paper at first we recall an interior differentiability result due to S. Cam-
panato (see [2], Theorem 1.I, p. 167) and from it we immediately obtain an interior
differentiability result; afterwards we prove a differentiability result near the bound-
ary and then a global differentiability result.

S. Campanato in [4] investigated the problem of differentiability of the solution
u € HY(Q, RY) of the basic system

Z D;a'(Du) =0

both in the interior and near the boundary, achieving results of the same type in
both cases.

Moreover, the problem to achieve global differentiability results had been investi-
gated by Campanato in [1] for solutions u € H*(Q, R) of linear elliptic systems. He
proved that the solutions of the Dirichlet problem with zero boundary data belong
to HFH2(Q, RV).

In this paper we investigate the problem of global differentiability of the solutions
u € HY(Q,RY) of the Dirichlet problem with nonzero boundary data for nonlinear
elliptic systems with controlled growth and we prove

Theorem 1.1. Let u € H'(Q, RY) be a solution of the Dirichlet problem
u—g€ HHQLRY) - ZDiai(m,u,Du) = B%(x, u, Du).
If Q is of class C? and g € H?(Q, RY) and if a', By satisfy conditions (1.1)—(1.4)

then
ue H*(Q,RY)

and we have
| S Ipsul?as
Q%

< (v, M) /ﬂ[l + 1P+ ol + lul® + [|Dul® + [ Dgl* + |1 D*g*] de.

115



2. PRELIMINARIES, NOTATION

We define
B(2°,0) ={z € R": ||z — 2°|| < o};
moreover, if 20 = 0,

BT (2°,0) = {z € B(z°,0): z, >0},
(2" 0) = {x € B(2",0): 2, =0}.

We will simply write Bt (o), I'(¢) and T instead of BT (0,0), I['(0,0) and T'(0,1)
respectively.
If u € H5(Q,RY) (k integer > 0), we define?

29: / S Dol da,

Q| o=k

k 1/2
nmmﬂ{ij%ﬂ} .
h=0

|u

H?(Q,RY), 0 <9 < 1is the space of those vectors u € L2(€2, RN such that

. 2
n = [ ao [ LEZUE o,
Q Q

[l — yl|m*+2?
and H'*7(Q,RV), 0 < ¥ < 1 is the space of those vectors u € L*(Q, RY) such that
Diue H’(Q,RY), i=1,2,...,n.

Let us consider ¢ € (0,1), h € R such that |h| < (1 — t)o and = € B(to) C Q. If
u: B(o) — RY we define

Tsp(x) = u(z + he®) —u(z), s=1,2,...,n

where {€°}s=12.. ., is the standard basis of R".

Now we recall some well known lemmas that we will utilize in what follows.

1/2
3 fulo,o = llullo,o = {Jq llull? dz} /2
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Lemma 2.1. Let u € L?(BT(R);RY), such that

/ (u‘Dngo) dz
B+(R)

then there exists the weak derivative D,u € L?(B*(R); RY) and there holds

< Mplop+r) Vo € CF(BY(R),RY)

|Dnulo,p+(ry < A

Proof. Since C§°(BT(R); RY) is dense in L?(B™(R); RY) there exists a unique
F € L*(B*(R); RY)*, such that

(Fo)=- [ (@Dup)ds Ve CRETR).R)
B+(R)
By Riesz’s representation theorem one gets a unique v € L?(BT(R); RY) with
(F,¢) = (v,9) 12+~ Vo € L*(BY(R);RY).
In particular,
[ wlodi== [ @Da)ds Ve e R (@R),RY),
B*(R) Bt (R)

By the definition of weak derivative we have v = D, u and the assertion follows from

|Dpu

0,B+(R) = IE | L2B(R))- < 4.

Lemma 2.2. Ifu € HY(B(0),RY), 0 > 0, then Vt € (0,1) and ¥ h such that
|h| < (1 —t)o we have

I17s,ntull0, Bty < R Dsullo, oy, s=1,2,...,n.
See, for instance, [2], Chap. 1, Lemma 3.VL.
Lemma 2.3. Ifu € L*(B(0),RY) and there exists M > 0 such that
I7s.ntullo, Bty < [RIM V|h| < (1—-t)o, Yte (0,1), s=1,2,...n
then u € H'(B(to), RY) and

|Dsullo,toy < M, s=1,2,...,n.

See [2], Chap. I, Theorem 3.X.
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Lemma 2.4. Ifu € H'(Q,RY) is a solution of the system (1.1) and if con-
ditions (1.2)—(1.4) hold, then u € HZ _(Q,RY) and for all B(p) C B(c) C Q we
have

c(v, M) .
e < T [ [T+ L+l + 3 D] as |

For this lemma see for instance, 2], Theorem 1.1, Chap. V.
From Lemma 2.4 we immediately deduce the following interior differentiability
result:

Theorem 2.1. Let u € H'(Q,RY) be a solution of the system (1.1) where we
suppose that conditions (1.2)—(1.4) are verified. Then for every open set Q* CC 2
we have

21) W < [ [+ 157+ 1ol + el + 3 1Dwwl?] da
Q -

where the constant ¢ depends also on d = dist(Q", 8).

If we extend this theorem to the solution of the system

(2.2) — " Dia'(z,u+ g, Du+ Dg) = Bo(z,u + g, Du + Dyg)
=1

with g € H?(Q, RY), we obtain immediately

Theorem 2.2. Let u € HY(Q,RY) be a solution of the system (2.2) with
g € H?(2, RN), where we suppose that conditions (1.2)—(1.4) hold. Then for every
open set Q* CC Q we have

(2.3) Julzq- < C/Q[H 124 [fol? + [ull® +llgl*” + | Dull® + | Dgl® + | D?g||*] da

where the constant ¢ depends also on d = dist(Q", 99Q).
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3. DIFFERENTIABILITY NEAR THE BOUNDARY

In the hemisphere B (1) let us consider the problem

u € HY(B*(1),RY),
(31) u=0 on F,
— Y Dial(z,u, Du) = B®(x,u, Du).
i=1

The last equality means that

¢ ; Tr = 0 T, U u Wi
(3.2) /Bm);(“ (z,u, Du)| Dip) d /B (B°(z,u, Du)|p)d

(1)

for all ¢ € H}(B*(1),RY).
Then we want to prove the following differentiability theorem.

Theorem 3.1. Ifu € H'(B*(1),RY) is a solution of the problem (3.1), under
the conditions (1.2)—(1.4), then for every o < 1 we have

(3.3) u € H*(B*(0),RY)
and
c(v, M . 1/2
(34) | Duly gy < D2 ){/’ [ £+ 1ol + Jlull? +nDuWhu} |
(1-0) U+

Proof. The proof will be divided into two steps. First let us suppose that

Let us choose
O0<o<l, O<p<l-o

and a function ¥ € C§°(R™) satisfying

C

0<9<1, ¥9=1in B(s), ¥=0in R*\ B(p), |Di19|§1

Then, taking into account the fact that w =0 on I', in (3.2) we can use as a test
function
0= oo rgu), T=12. . n—1
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and we obtain

(3.5) / Z(Tngai (z,u, Du) ‘Di(1927r79u)) dr = / (B° ‘TT’,Q(ﬁQTngU)) dz,
BH(1) 7 B+(1)

Let us observe that
) Laq .
(3.6) 700" (2, u, Du) = /0 aa’(aﬁ +toe”, u(x) + t7 pu(z), Du(x) + t7. p Du(z)) dt,
if we set

(3.7)

. Y aa (x + toe”, u(x) + tr, pu(x), Du(z) + tr, ,Du(z))
A= [ ol ,

1 i
Oaj,

8uk

(38) Biu(x) = /

(x + toe", u(z) + t1r pu(z), Du(z) + tr, yDu(x)) dt,

Bi:{BikL h,k=1,2,..., N,

19
(3.9) CZ’“(J;) = / ga;.l (x + toe", u(x) 4+t pyu(x), Du(z) + t 7 p Du(z)) dt,
0 pk

Cij ={Cl}}, hk=12..N,

we have that

(3.10) Tr00' (2, u, Du) = Ajo + BT gu + Z CijTr.0 Dju.
j=1

Then from (3.5) we obtain

(3.11) A= / 92 Z(CijTr,ngU|Tr,gDiU) dz
B+(1) ij
- fg/ > (CijTroDju| 7y qu)9D;d) da
B+(1) ij
—/ Z(BiTT7Qu|Di(1927T,Qu)) dz
B*(1)

%

7Q/B Z(AHDZ-(ﬂQTngu) dz

1)

+/ (B°(x,u, D, u)‘Tn,g(ﬁQTngu)) de=B+C+D+E.
B+ (1)
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From (1.2), (3.7), (3.8), (3.9) we deduce

(3.12) IBill + 1Cs]l < M
AL < (@) + e{llull® + |7roul|® + [ Dull + 170 Dull}

where f(z fo x + tee") dt and then, from (1.3) we get

(3.13) A y/ 92|17,., Dul|? dz.
B*(1)

In virtue of (3.12) we obtain

M
ey B 2L Dl

(1-0) Jpr)

M
<o [ PmanuPar+ STt

B+(1) (1=0)% Jp+(q)

and
9 J

G15) el [ el {lmo Dl + gl o

<5/ 192||TT7QDu||2dx+c(M,5)/ I 2 da
B+(1) B+

()

c(M) / 2

+ |77 ouel| dz.
(1—=0)? Jpry ¢

From (3.12) we obtain

(8.16) D] <} / AP lmoDull + = ! gl f da

co(Me) ,

és/ |7 ,Du dx+7g
B+(1) I7e I” (1-0)?

x /B+( ){IIfIIQ +ull* + 7 pul** + | Dull® + |77 o Dul|*} da
o

+c(€)/ ||Trygu||2d:1:.
Bt (o)
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Taking into account that

1
/ |f(x)|2dx:/ dt/ \f(m+tger)|2dx<c/ ]2 da,
B+ (o) 0 Bt (g) B+(1)
/ Jul> dz < / {1+ [lull?'} d,
B+ (o) B*(1)

/ |7 oul|? dz < g2/ |Du||*dz by Lemma 2.2,
B (o) B+(1)

L malrde = [ et o) o)
Bt(e) Bt(e)

arse [ (14l an

B+(1)

/ 7.y Du|2 dz = / IDu(z + 0e") — Du(a)|? de < c/ | Dul|? de
B+ (o) Bt (o) B+(1)

we conclude from (3.14), (3.15) and (3.16)

M
317)  |B| <5/ 192||TT7QDu||2dm+c(7’€)292/ | Dul|? dz,
B+(1) (1-o0) B+(1)

M
3.18)  |C] <5/ 92|17, Dull? dz + 0(7’5)292/ | Dul|? dz,
B+(1) (1-o0) B+(1)

M,e)
3.19 D <5/ 9?7, Du 2dx+0(7792
@19)  pl<e [ Pl dr S

< [Pl D) da.
B+(1)

Moreover, keeping in mind (1.4) and Lemma 2.2 we obtain
1/2
(3.20) |E| < {/ ||B0(x7u,Du)||2da?} |19297'T,Qu|1,3+(1)
B+(1)
1/2
<{of, oUAP+ a4 1D} o)
B+(1)

[ [#raul? + il aa]
X Tr,o DU —= V|7 pul* dz
B+(1) ¢ (1-0)? ¢
c(e)o?
és/ 9?|| 7 o Dul|? dz + ———
B+(1) ¢ (1-0)?
[ AUl P + 1Dl o
B (e)

c(e)o?
< 5/ 9?|| 7 o Dul|? dz + ———
B+(1) ¢ (1-0)2

2 4 || Dul|?} da.

<[ Il
BH(1)
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From (3.11), (3.13), (3,17)—(3.20) with & = g~ we have

c(v, M) ,

/ |7 o Dul]” dz < =——50 / {1+ 11 + [ fol? + u|* + || Du||*} da
B+(1) (1-0) B+(1)

and

e(v, M) .
[ ImeDulPde < G502 [ (7P 4 AP [l 4 1Dul) do
B+ (o) ( o) B+(1)

and then, from Lemma 2.3 we conclude that there exists D, Du € L*(B* (o), RY),
r=1,2,...,n—1, and

n—1
(3.21) / | D, Du||* dx
,; B*(0)

e(v, M)

= L+ £+ [ fol? + ull® + || Dul?} da.
S [ R Ll )

In the case r = n we argue as follows.
Fix0<o<R<land0<p< %(1 — R). We want to estimate the integral

(3.22) / (Dpu|Dnp)dz, ¢ € C5°(BT(R), RY).
B¥(R)

We observe that V2 € BT (R) + ge™

n—1
(3.23) Tn,—o@" (, u, Du) = Cp p[Tn,— o Dnu] + Z ChjTn,—oDju]
j=1

+ Bn[Tm—Qu] +(-0)A}

where C;;, B" and A are defined as in (3.7), (3.8), (3.9), o being replaced by (—p).
Now C,,,, is a nonsingular matrix; in fact if £ = (0,0, ...,£,) we deduce from (1.2)

(Con(2)€"[€") Z vlI€"|* VE" € RY, Y € B¥(1)

so that*

det Gy #0 and ||C; ()] < @ Vz e BT(1).
v

1/2
STf A = {AMF) then ||A| = {% \Ah’f|2} .
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In conclusion, from (3.23) we get

(3.24) Tn,—oDntt = C,;} [Tn,—oa" (2, u, Du) + G(Du) + F(u) + 0A}]

n—1
where G(Du) = — > Cpj[tn,—oDju] and F(u) = —B™[1,,—,u].
j=1

On the other hand, from (3.2) and by (1.2), (1.4), (3.21) it follows that D,a"(x, u,
Du) exists and belongs to L?(BT(R)), V R < 1; moreover, taking into account that

n—1

D,a"(z,u,Du) = — Z D;a*(x,u, Du) + Bo(z,u, Du)
i=1
:_ZaamuDu nzliaaﬂcuDuDj
i=1 =1
n—1 n
0 D
—ZZM%HBO(MDU)
i=1 j=1 p

we have

(3.25) / | Dua™ (@, u, Du)|* da
B*(R)

e(v, M)
SG-Re

[ IR Rl Dl do
B*(1)

Finally, integral (3.22) can be estimated as follows.
If we choose 0 < o < dist(supp(y), 9B*(R)). For every ¢ € C§°(BT(R)) we have
that 7, ., € C° (BT (R),RY) and then

/ (Dnu’Tn,ggo) dz = / (Tn,_QDn’U,’QD) dz
B+(R) B+(R)

Then, taking into account (3.21), (3.23), (3.24), (3.25), if ¢ is small enough, we
get5

/ (Dnu’Tn,ng) dz
B+(R)

/ [(Th,— 0" (z,u, Du) + G(Du) + F(u) + QA")|(C’ML1)*<,0] dz
BT (R)

5 (CT]%)* is the adjoint of the matrix Cp,1.
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<ol M)I@o,m(m{ [ -t D)
BT (R)

n—1 1/2
3 7o Dyl + 7 gl + ATl dm}

Jj=1

< v, M)I@o,m(m@{ [ D Dol
B+(1)

n—1 1/2

£ [Dusull? + [ Dol + ||Azn2dm}

j=1

c(v, M x 1/2

(v, M) O,Bﬂmg{/ﬂ)[1+c|f2+|fo2+||u||2+||Du||21dx} -
BT(1

< (1_R)|<p

Consequently, by dividing all sides by ¢ and taking the limit for ¢ — 0 we obtain
that for every ¢ € C§°(BT(R), RY)

(3.26)

/ (Dnu|Dn<p) dz
B+(R)

c(v, M . 1/2
<R Momm { [, B+ V@F + @+ 4 Duar

Applying now Lemma 2.1, from (3.26) we obtain that D,,u € H'(BT(R),R"), and

(3.27) / | Dy || dz
B (o)

c(v, M)

SRR o G L@+l Dl e

Theorem 3.1 follows from (3.21) and (3.27). O

Now let us consider for g € H'(B*(1),R") the problem

(3.28) u=0 on T,

—> Did’(z,u+ g, Du+ Dg) = B°(x,u+ g, Du+ Dy)

i=1

and let us assume that conditions (1.2)—(1.4) are satisfied with {2 replaced by B¥(1).
Then we prove the following result with a proof analogous to that of Theorem 3.1.
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Theorem 3.2. Let u € HY(B*(1),RY) be a solution of the problem (3.28)
under the conditions (1.2)—(1.4). Let us assume that g € H*>(B*(1),RY). Then for
every 0 < R < 1, Du belongs to H'(B*(R),RY) and

|Du|1,B+(1)

C(VvM){ 2 2
SR Uy [T P+ 15 5

1/2
2+ | Dul® + || Dgll? + |D?g]1%] dfv} :

4. A GLOBAL DIFFERENTIABILITY RESULT

Let u € HY(Q2, RY) be the solution of the Dirichlet problem

(41) u_geHé(Q7 RN)v
—ZDiai(x,u,Du) = B%x,u,Du) in Q

where g € H?(2, RY); the open set (2 is of class C?, the vector mappings a‘(z, u,p),
i = 1,...,n belong to C*(Q x RV x R™) and satisfy the conditions (1.2)—(1.3);
the vector B°(x,u, p) defined in A = Q x RN x R™" is measurable in x, continuous
in (u,p) and satisfies condition (1.4).

If we assume w = u — g, problem (4.1) can be written in the equivalent form

(4.2) w € HYH(Q,RY),
- ZDiai(z, w+ g, Dw + Dg) = B(z,w + g, Dw + Dg) in Q.

?

As Q is of class C?, if 20 € 9Q, about z2° there exists an open neighborhood B such
that 9B is mapped, by a mapping y = J(z) of class C? together with its inverse, onto

the ball B(0,1) and, in particular, 2 N is sent to BT (1) and 92 NB to I

Let us set

o _ (g0
J(x) = ‘det 8‘:;(;) ;

126



moreover, for all y € B(0,1), u € RY and p € R™ we define

0Ji
al‘j

8(0) = (57) 37

p) =D ar(y)p",
a(y, p) =(¢"--,q"),
*(y,u, p) Zﬁsz (¥),w,q(y,p)),

(4.4) aij(y) = W),

_
JRE )

Clearly ¢/ is a vector of RV defined in B(0,1) x R™V; A* (s =1,...,n) and By are
vectors of RY defined in B(0,1) x RY x R™™; moreover, «;;, (3 ; are functions of

Bo(y,u,p) = Bo(3~ " (y),u,q(y,p)) -

class C1(B(0,1)). We can easily prove that the vectors A"(y, u,p), Bo(y,u,p), by
virtue of assumptions (1.2)—(1.4) verify the same conditions as a‘(x,u, p), Bo(z, u, p)
in which constants and coefficients are multiplied by a suitable positive constant
c(J) =¢ and f, fy are replaced by F, Fp.

If y € BT(1) and u is a vector function defined in B N €2, then we get

(4.5) Uly) =u@'(y)) andso u(z)=U((2)),
W(y) =u@'(y)) andso w(z)=W((2))
G(y) =93 '(y) andso g(z) = G((x))
O(y) =9I '(y) andso ¢(z) = P(J(x)).

Now, because from (4.2) we get, in particular,

(4.6) / Z(ai(x, w + g, Dw + Dg)|D;p) dx
an®s <
= / (Bo(x,w+g,Dw+Dg)|<p)dx Vo€ HY(QNDB,RY)
QN®

then making use of the transformation of coordinates y = J(z) and taking into
account that

(4.7)
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as) Y [ (ai<3-1<y>>7w<y>+G<y>7zaﬂ<y><DjW<y>+DjG<y>>,...7

> ain(y)(D;W(y) + D;Gly Zﬁhz )Dy®(y)) dy

= [ B (3050 6. Y an )28 ) + D6 ) ...

: 1
> an P 0) + DGO ) 5=y

Then W is a solution of the problem

(4.9) W(y) € H'(B*(1),RY),
W=0 onT,
— > Dp"(y,W + G, DW + DG) = Bo(y, W + G,DW + DG) in B*(1).

Since J is of class C? and g € H2(QNB,RY), w € HY(QNB,RY), f and fy €
L*(QN%B), also G € H*(BT(1),RY), U € HY(B*(1),RN), F and Fy € L?(B*(1))
(see [2], Theorem V, p. 375) and we get

1612 -y vy < N9l g gny: *=0.1,2,
||U||L2*(B < (
G172

~ 2
vy S C@ullzz: @nm gy

~ 2
(4.10) B+ ey S CONIIT2 grm vy

||U||H1 B+1),RM) S ¢ )HUHHI(QmB RNY

<

||F||L2(B+(1)7[RN) Sc )||f||L2 (Qns)

||F0||%2(B+(1)7RN) <c(d )||f0||L2 (QnyB)*

Then from Theorem 3.2 and Sobolev’s theorems we get for all R € (0,1)
e(v, M)

(411) IDW3p 5+ @ypm < (1-R)?

[ IFR - |RE - WI +6)
Bt (1)

+{IDW|? + [ DG|* + || D*G*] dy.
Consequently, since W = U — G, we have

c(v, M)

(412) DUl )09 < 77— gy

/ L+ 12 + B+ U1 + G
B+(1)
L |DUI? + DG + | DG dy.
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If we denote by B(R) the inverse image of B(0, R), since the mapping J of class C?
preserves the properties ([1], Theorem V, p. 375), from (4.12) we have

c(v, M,¢)
(@13) IDulfs ormyan) < g [0+ 112+ 1Aol?

+lul® + llgl* + 1 Dull* + | Dg||* + || D*|*] da.

Using this local differentiability result near the boundary together with Theorem 2.2,
we can prove by the usual covering argument the global differentiability result which
follows.

Theorem 4.1. Let u € H'(2, RV) be the solution of the Dirichlet problem (4.1)
and suppose that

(4.14) Q is of class C?,
(4.15) g € H*(Q,RY)

and a', By satisfy conditions (1.1)—(1.4). Then
(4.16) ue H*(Q,RY)
and we have

(4.17) /QZ 1Dijull® dz < e(v, M, ) /9[1 + 112+ 1ol + Jull® + || Dul|?
i

+ | Dgl* + 1D?g||*) da.
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