[1] D. R. Adams and L. I. Hedberg:
Function spaces and potential theory. Springer, Berlin, 1996.
MR 1411441
[2] T. I. Amanov:
Spaces of differentiable functions with dominating mixed derivatives. Nauka Kaz. SSR, Alma-Ata, 1976. (Russian)
MR 0860038
[3] D. B. Bazarkhanov:
Characterizations of the Nikol’skii-Besov and Lizorkin-Triebel function spaces of mixed smoothness. Trudy Mat. Inst. Steklov 243 (2003), 53-65.
MR 2049462 |
Zbl 1090.46025
[4] H.-J. Bungartz and M. Griebel:
Sparse grids. Acta Numerica (2004), 1–123.
MR 2249147
[7] I. W. Gelman and W. G. Maz’ya:
Abschätzungen für Differentialoperatoren im Halbraum. Akademie-Verlag, Berlin, 1981.
MR 0644480
[9] P. Grisvard:
Commutativité de deux fonctuers d’interpolation et applications. J. Math. Pures Appl. 45 (1966), 143–290.
MR 0221309
[10] L. I. Hedberg and Y. Netrusov:
An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation. Memoirs of the AMS (to appear).
MR 2326315
[12] P. I. Lizorkin and S. M. Nikol’skij:
Classification of differentiable functions on the basis of spaces with dominating mixed smoothness. Trudy Mat. Inst. Steklov 77 (1965), 143–167.
MR 0192223
[13] S. M. Nikol’skij:
On boundary properties of differentiable functions of several variables. Dokl. Akad. Nauk SSSR 146 (1962), 542–545.
MR 0143064
[14] S. M. Nikol’skij:
On stable boundary values of differentiable functions of several variables. Mat. Sbornik 61 (1963), 224–252.
MR 0156182
[15] P.-A. Nitsche:
Sparse approximation of singularity functions. Constr. Approx. 21 (2005), 63–81.
MR 2105391 |
Zbl 1073.65118
[16] M. C. Rodríguez Fernández: Über die Spur von Funktionen mit dominierenden gemischten Glattheitseigenschaften auf der Diagonale, Ph.D-thesis, Jena. 1997.
[17] H.-J. Schmeisser:
Vector-valued Sobolev and Besov spaces. Teubner-Texte zur Math. 96 (1987), 4-44.
MR 0932287 |
Zbl 0666.46039
[18] H.-J. Schmeisser and H. Triebel:
Topics in Fourier analysis and function spaces. Wiley, Chichester, 1987.
MR 0891189
[20] H. Triebel:
A diagonal embedding theorem for function spaces with dominating mixed smoothness properties. Banach Center Publications, Warsaw 22 (1989), 475–486.
MR 1097217 |
Zbl 0707.46020
[23] J. Vybíral: Characterisations of function spaces with dominating mixed smoothness properties. Jenaer Schriften zur Mathematik und Informatik, Math/Inf/15/03, 2003.
[24] J. Vybíral:
Function spaces with dominating mixed smoothness. Diss. Math. 436 (2006), 1–73.
MR 2231066
[25] J. Vybíral:
A diagonal embedding theorem for function spaces with dominating mixed smoothness. Funct. et Approx. 33 (2005), 101–120.
MR 2274153