Previous |  Up |  Next

Article

Keywords:
integral operator; mixed norm space; boundedness
Summary:
This article provided some sufficient or necessary conditions for a class of integral operators to be bounded on mixed norm spaces in the unit ball.
References:
[1] A.  Benedek and R.  Panzone: The spaces  $L^p$ with mixed norm. Duke Math.  J. 28 (1961), 301–324. DOI 10.1215/S0012-7094-61-02828-9 | MR 0126155
[2] B. R.  Choe: Projections, the weighted Bergman spaces, and the Bloch space. Proc. Am. Math. Soc. 108 (1990), 127–136. DOI 10.1090/S0002-9939-1990-0991692-0 | MR 0991692 | Zbl 0684.47022
[3] F.  Forelli and W.  Rudin: Projections on spaces of holomorphic functions in balls. Indiana Univ. Math.  J. 24 (1974), 593–602. MR 0357866
[4] S.  Gadbois: Mixed-norm generalizations of Bergman space and duality. Proc. Am. Math. Soc. 104 (1988), 1171–1180. DOI 10.1090/S0002-9939-1988-0948149-3 | MR 0948149
[5] C.  Kolaski: A new look at a theorem of Forelli and Rudin. Indiana Univ. Math.  J. 28 (1979), 495–499. MR 0529680 | Zbl 0412.41023
[6] O.  Kurens and K. H.  Zhu: A class of integral operators on the unit ball of  $\mathbb{C}^n$. Integr. Equ. Oper. Theory 56 (2006), 71–82. DOI 10.1007/s00020-005-1411-3 | MR 2256998
[7] Y. M.  Liu: Boundedness of the Bergman type operators on mixed norm space. Proc. Am. Math. Soc. 130 (2002), 2363–2367. DOI 10.1090/S0002-9939-02-06332-3 | MR 1897461
[8] G. B.  Ren and J. H.  Shi: Bergman type operator on mixed norm spaces with applications. Chin. Ann. Math., Ser. B 18 (1997), 265–276. MR 1480002
[9] G. B.  Ren and J. H.  Shi: Forelli-Rudin type theorem on pluriharmonic Bergman spaces with small exponent. Sci. China, Ser.  A 42 (1999), 1286–1291. DOI 10.1007/BF02876029 | MR 1749939
[10] G. B.  Ren and J. H.  Shi: Gleason’s problem in weighted Bergman space on egg domains. Sci. China, Ser.  A 41 (1998), 225–231. DOI 10.1007/BF02879040 | MR 1621125
[11] A. L.  Shields and D. L.  Williams: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162 (1971), 287–302. MR 0283559
[12] K. H.  Zhu: The Bergman spaces, the Bloch spaces and Gleason’s problem. Trans. Am. Math. Soc. 309 (1988), 253–268. MR 0931533
[13] K. H.  Zhu: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics  226. Springer-Verlag, New York, 2005. MR 2115155
Partner of
EuDML logo