[3] F. Forelli and W. Rudin:
Projections on spaces of holomorphic functions in balls. Indiana Univ. Math. J. 24 (1974), 593–602.
MR 0357866
[5] C. Kolaski:
A new look at a theorem of Forelli and Rudin. Indiana Univ. Math. J. 28 (1979), 495–499.
MR 0529680 |
Zbl 0412.41023
[8] G. B. Ren and J. H. Shi:
Bergman type operator on mixed norm spaces with applications. Chin. Ann. Math., Ser. B 18 (1997), 265–276.
MR 1480002
[9] G. B. Ren and J. H. Shi:
Forelli-Rudin type theorem on pluriharmonic Bergman spaces with small exponent. Sci. China, Ser. A 42 (1999), 1286–1291.
DOI 10.1007/BF02876029 |
MR 1749939
[10] G. B. Ren and J. H. Shi:
Gleason’s problem in weighted Bergman space on egg domains. Sci. China, Ser. A 41 (1998), 225–231.
DOI 10.1007/BF02879040 |
MR 1621125
[11] A. L. Shields and D. L. Williams:
Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162 (1971), 287–302.
MR 0283559
[12] K. H. Zhu:
The Bergman spaces, the Bloch spaces and Gleason’s problem. Trans. Am. Math. Soc. 309 (1988), 253–268.
MR 0931533
[13] K. H. Zhu:
Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226. Springer-Verlag, New York, 2005.
MR 2115155