[2] C. D. Aliprantis and O. Burkinshaw:
A new proof of Nakano’s theorem in locally solid Riesz spaces. Math. Zeit. 144 (1975), 25–33.
DOI 10.1007/BF01214405 |
MR 0385510
[4] A. Avallone and A. Valente:
A decomposition theorem for submeasures. Atti. Sem. Mat. Fis. Univ. Modena XLIII (1995), 81–90.
MR 1338263
[5] A. Boccuto and D. Candeloro:
Uniform $s$-boundedness and convergence results for measures with values in complete $\ell $-groups. J. Math. Anal. Appl. 265 (2002), 170–194.
DOI 10.1006/jmaa.2001.7715 |
MR 1874264
[6] F. G. Bonales, F. J. Trigos-Arrieta and R. V. Mendoza:
A characterization of Pontryagin-Van Kampen duality for locally convex spaces. Topology Appl. 121 (2002), 75–89.
DOI 10.1016/S0166-8641(01)00111-0 |
MR 1903684
[8] W. W. Comfort, S. Hernandez and F. J. Trigos-Arrieta:
Cross sections and homeomorphism classes of Abelian groups equipped with the Bohr topology. Topology Appl. 115 (2001), 215–233.
MR 1847464
[10] L. Drewnowski:
Uniform boundedness principle for finitely additive vector measures. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. et. Phys. 21 (1973), 115–118.
MR 0316670 |
Zbl 0248.28007
[12] D. H. Fremlin:
Topological Riesz Spaces and Measure Theory. Cambridge University Press, England, 1974.
MR 0454575 |
Zbl 0273.46035
[14] G. Jameson:
Ordered Linear Spaces, Lecture Notes in Mathematics No. 141, Springer-Verlag, Berlin, Germany. 1970.
MR 0438077
[15] J. K. Kalton:
Topologies on Riesz groups and applications to measure theory. Proc. London Math. Soc. 28 (1974), 253–273.
MR 0374377 |
Zbl 0276.28014
[16] A. R. Khan and K. Rowlands:
A decomposition theorem for submeasures. Glasgow Math. J. 26 (1985), 67–74.
MR 0776678
[18] K. D. Schmidt:
Decompositions of vector measures in Riesz spaces and Banach lattices. Proc. Edinburgh Math. Soc. 29 (1986), 23–29.
MR 0829177 |
Zbl 0569.28011
[20] C. Swartz:
An Introduction to Functional Analysis. Marcel Dekker, New York, U.S.A., 1992.
MR 1156078 |
Zbl 0751.46002