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Abstract. Let (G, τ ) be a commutative Hausdorff locally solid lattice group. In this paper
we prove the following:
(1) If (G, τ ) has the A(iii)-property, then its completion (Ĝ, τ̂ ) is an order-complete locally
solid lattice group.

(2) If G is order-complete and τ has the Fatou property, then the order intervals of G are
τ -complete.

(3) If (G, τ ) has the Fatou property, then G is order-dense in Ĝ and (Ĝ, τ̂ ) has the Fatou
property.

(4) The order-bound topology on any commutative lattice group is the finest locally solid
topology on it.

As an application, a version of the Nikodym boundedness theorem for set functions with
values in a class of locally solid topological groups is established.

Keywords: topological completion, locally solid ℓ-group, topological continuity, Fatou
property, order-bound topology

MSC 2000 : 46A40, 54H11, 28B15

1. Introduction

The theory of topological Riesz spaces is very rich, and vector measures with val-

ues in these spaces and order-complete Riesz spaces have been extensively studied

(for example, see Aliprantis [1], Fremlin [12], Schmidt [18] and Swartz [19]). In recent

years, contributions to the theory of topological groups have been made by Comfort

et. al [8–9], Bonales [6] and Raczkowski [17]; in particular, they have studied totally

bounded group topologies, Bohr topology and the relevance to locally convex spaces

of the celebrated theorem of Pontryagin-Van Kampen which states that every locally

compact Abelian group satisfies group duality (see [6], p. 76 for the details). Thereby,

the school of mathematicians led by W.W.Comfort has generated tremendous activ-

ities in this area of investigations. Topological Riesz groups and their special case,
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namely, topological lattice groups and measures with values in such groups have been

considered by Kalton [15], Khan and Rowlands [16], Avallone and Valente [4] and

Jakubík [13]. However, only some partial results have been obtained for functions

taking values in this class of ordered groups mainly due to the lack of topology on

them (see [5], p. 171). In this paper we establish results specifically related to the

topological completion of a Hausdorff locally solid topological lattice group.

This paper is organized as follows: Let G be a commutative lattice group (hence-

forth called an ℓ-group), with a locally solid Hausdorff group topology τ . In this

paper we investigate some of the properties of (G, τ) which are inherited by its com-

pletion (Ĝ, τ̂). In particular, in Section 3, we show that, if every bounded monotonic

sequence in G is τ -Cauchy, then (Ĝ, τ̂) is an order-complete locally solid ℓ-group; this

extends Theorem 1 by Kalton [15]. Fremlin [11] has proved (in Theorem 1) that,

if (E, ξ) is a topological vector lattice with a Hausdorff locally solid topology which

has the Fatou property, then its completion (Ê, ξ̂) has the Fatou property and E is

order-dense in Ê. A new proof of Fremlin’s theorem was given by Aliprantis and

Burkinshaw in [2]; using their ideas we prove an analogue of Fremlin’s result for a

locally solid ℓ-group with the Fatou property. We also obtain the Nikodym bound-

edness theorem for lattice group-valued submeasures which extends Theorem 1 of

Drewnowski [10]. Finally, in Section 4, we introduce the analogue of the order-

bound topology on G and show that it is the finest locally solid group topology on

an ℓ-group.

2. Notation and Preliminaries

Throughout this paper all groups are commutative and are written additively. By

an ℓ-group, we mean a partially ordered group G in which each pair of elements x, y

has a supremum (denoted by x ∨ y) and an infimum (denoted by x ∧ y). We write

x+ = x ∨ 0, x− = (−x) ∨ 0, x = x+ − x− and |x| = x+ + x− for any x ∈ G. For the

elementary properties of ℓ-groups we refer the reader to [14].

An ℓ-group G is said to be σ-complete (resp. order-complete) if every bounded

increasing sequence (net) in G has a supremum. An ℓ-subgroup H of G is said to

be order-dense in G, if, for each x > 0 in G, x = sup{y ∈ H : 0 6 y 6 x}. Let

G+ = {x ∈ G : x > 0}. An ℓ-group is said to be Archimedean if, for x, y in G+,

ny 6 x (n = 1, 2, . . .) implies y = 0. Clearly, a σ-complete group is Archimedean

and, if G is an Archimedean ℓ-group, then an ℓ-subgroup H is order-dense in G if

and only if, for each u > 0 in G, there exists a v > 0 in H such that 0 < v 6 u.

If G is an ℓ-group, a subset V of G is said to be solid if a ∈ V and |x| 6 |a|

implies that x ∈ V . We note that a solid set is symmetric; that is, V = −V . A

group topology τ on G is said to be locally solid if it has a base of τ -neighborhoods
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of 0 consisting of solid sets. If a subgroup of G is solid, then it is said to be an ideal

in G.

A function q on G is said to be a quasi-norm if it has the following properties for

all a, b in G.

(i) q(a) > 0,

(ii) q(0) = 0,

(iii) q(a + b) 6 q(a) + q(b),

(iv) q(−a) = q(a).

If, in addition, (v) q(x) 6 q(y) for all x, y in G with |x| 6 |y|, then it is said to be

an ℓ-quasi-norm.

A family of quasi-norms (resp. ℓ-quasi-norms) determines a (locally solid) group

topology on G; on the other hand, if τ is a (locally solid) group topology on G, then

τ may be determined by the family of all τ -continuous quasi-norms (ℓ-quasi-norms)

on G (cf. [12], 22C)). A subset B of (G, τ) is said to be bounded if sup
x∈B

η(x) < +∞

for all τ -continuous quasi-norms η on G. A locally solid topology τ on G is said to

have the Fatou property if there exists a base U of τ -neighborhoods of 0 with the

following properties:

(1) each U ∈ U is solid, and

(2) if A ⊆ U and A ↑ x (A upwards directed with supremum x), then x ∈ U .

An ℓ-quasi-norm ̺ is said to have the Fatou property if A ↑ x in G+ implies ̺(x) =

sup{̺(y) : y ∈ A}. A family of Fatou ℓ-quasi-norms determines a Fatou topology on

G; conversely, a locally solid topology τ with the Fatou property may be determined

by the family of all τ -continuous Fataou ℓ-quasi-norms (cf. [12], 23B)).

A subset A of G is said to be order-bounded if there exists an element x in G

such that A ⊆ [−|x|, |x|]. A sequence {un} in G is said to order-converge to an

element u in G, written as un

(0)
→ u, if there exists a sequence {vn} in G such that

|un − u| 6 vn ↓ 0 (n = 1, 2, . . .). Following the notation of [1], a locally solid ℓ-group

(G, τ) is said to have the A(iii)-property (resp.A(iv)-property) if and only if every

order-bounded increasing sequence (net) is τ -Cauchy.

By modifying the proof of ([15], Lemma 2) we have the following:

Lemma 1. Let (G, τ) be a locally solid ℓ-group. Then (G, τ) has the A(iii)-

property if and only if it has the A(iv)-property.
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3. The completion group

If (G, τ) is a (Hausdorff) topological group, then there exists a (Hausdorff) com-

plete topological group, (Ĝ, τ̂ ) say, such that G may be isomorphically embedded

in Ĝ as a τ̂ -dense subgroup and τ̂ induces the original topology τ on G (for details

of the construction, we refer the reader to [7], pp. 242–250). In the sequel, we shall

refer to (Ĝ, τ̂ ) as the topological completion of (G, τ). In this section we investigate

some properties of (G, τ) which are inherited by its completion (Ĝ, τ̂ ).

We begin with the following generalization of Theorem 1 due to Kalton [15].

Theorem 1. Let (G, τ) be a Hausdorff locally solid ℓ-group with the A(iii)-

property. Then (Ĝ, τ̂ ) is an order-complete locally solid ℓ-group.

P r o o f. Since τ is locally solid, the mapping x → x+ is uniformly continuous

and so the positive cone P = {x ∈ G : x > 0} is τ -closed. Let P̂ denote the τ̂ -closure

of P . Then, as in the proof of ([1], Theorem 2.1), P̂ is a cone in Ĝ; that is, P̂ +P̂ ⊆ P̂

and P̂ ∩ −P̂ = {0}. The partial ordering induced by P̂ on Ĝ extends the partial

ordering on G and makes Ĝ into an ℓ-group.

Let U be a base of solid τ -neighborhoods of 0 in G. A base Û of τ̂ -neighborhoods

of 0 in Ĝ consists of the sets Û , where U ∈ U and Û denotes the τ̂ -closure of U . Let

V̂ by any τ̂ -neighborhood of 0. Then, as in the proof of ([1], Theorem 2.1), there

exists a τ̂ -neighborhood Û of 0 such that the solid hull of Û , S(Û) say, is contained

in V̂ ; that is, Û ⊆ S(Û) ⊆ V̂ . It follows that (Ĝ, τ̂) is a locally solid ℓ-group.

To show that (Ĝ, τ̂ ) is order-complete we modify the proof of ([15], Theorem 1)

and use neighborhoods instead of quasi-norms, as follows.

Suppose that an ∈ Ĝ, an ↑ and an 6 0 (n = 1, 2, . . .). Let V̂ be any τ̂ -neighborhood

of 0 and let Û be a τ̂ -neighborhood of 0 in Ĝ such that Û + Û + Û ⊆ V̂ . For each

n, there exists a solid τ̂ -neighborhood Ûn of 0 such that Û1 + Û2 + . . . + Ûn ⊆ Û and

an element xn in G, with xn 6 0, such that |xn − an| ∈ Ûn.

Let y1 = x1, yn+1 = yn ∨ xn+1 (n > 1), so that yn ∈ G, yn ↑ and yn 6 0. Now

|yx ∨ xn+1 − an+1| 6 |xn+1 − an| + |yn − an|,

which implies that, for n = 1, 2, . . .,

|yn − an| 6 |x1 − a1| + |x2 − a2| + . . . + |xn − an|,

and so

|yn − an| ∈ Û1 + . . . + Ûn ⊆ Û .
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Thus, for any integer p and n = 1, 2, . . .,

|an+p − an| 6 |an+p − yn+p| + |yn+p − yn| + |yn − an|,

and so, since (G, τ) has the A(iii)-property, it follows that, for n sufficiently large,

|an+p − an| ∈ Û + Û + Û ⊆ V̂ .

Thus (Ĝ, τ̂ ) has the A(iii)-property and so, by Lemma 1, has the A(iv)-property.

Suppose that {xα : α ∈ I} is a bounded increasing net in Ĝ. Then, since Ĝ is

complete, xα
τ̂
→ x in Ĝ and it is not difficult to see that x > xα (α ∈ I). Also, if

y > xα for all α ∈ I, then y − xα ∈ P̂ and y − xα
τ̂
→ y − x ∈ P̂ . Thus x = supxa,

and so Ĝ is order-complete, as required. �

In [2], Aliprantis and Burkinshaw gave a new proof of the following theorem (due

to Nakano) and on a subsequent ‘revisit’ to Nakano’s theorem in [3] were able to

simplify their proof even further.

Theorem N (Nakano). If (E, τ) is an order-complete locally solid vector lattice

with the Fatou property, then the order intervals are τ -complete.

We now prove a version of the above theorem for an order-complete locally solid

ℓ-group with the Fatou property; our proof is based on the proof of Theorem N but

we make use of ℓ-quasi-norms instead of neighborhoods. For this, we require the

following pair of lemmas.

Lemma 2. Let (G, τ) be a Hausdorff locally solid ℓ-group and (Ĝ, τ̂) its comple-

tion. Then the following are equivalent:

(i) G is an ideal in Ĝ,

(ii) every order interval in Ĝ is τ -complete.

P r o o f. This is a trivial modification of the proof of ([1], Theorem 2.2). �

Lemma 3. Let G be an ℓ-group and suppose that the sequence {un} order-

converges to u ∈ G. If ̺ is a Fatou ℓ-quasi-norm, then ̺(u) 6 sup
n

̺(un).

P r o o f. Since un

(0)
→ u, there exists a sequence {vn} inG such that |un−u| 6 vn ↓

0 (n = 1, 2, . . .). Now | |un| − |u| | 6 |un − u| 6 vn ↓ 0 implies that (|un| − vn)+ ↑ |u|

and (|u| − vn)+ 6 |un| (n = 1, 2, . . .). Since ̺ is a Fatou quasi-norm,

̺(u) = ̺(|u|) = sup
n

̺((|u| − vn)+) 6 sup
n

̺(un),

as required. �
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Theorem 2. Let (G, τ) be an order-complete Hausdorff locally solid ℓ-group with

the Fatou property. Then the order intervals of G are τ -complete.

P r o o f. By Lemma 2 it is sufficient to show thatG is an ideal in Ĝ. We first show

that G is order-dense in A(G), the ideal generated by G in Ĝ; A(G) = {û ∈ Ĝ : ∃x

in G such that |û| 6 |x|}.

Let û be an element of A(G), so there is an element u in G such that 0 < û 6 u.

Since τ̂ is Hausdorff, there exists a Fatou τ -neighborhood V of 0 such that û 6∈ V̂

and corresponding to V there is a τ -continuous Fatou ℓ-quasi-norm η on G such that

{x ∈ G : η(x) < 1} ⊆ V . Now η has a unique extension to a τ̂ -continuous ℓ-quasi-

norm, η̂ say, on Ĝ, and we can choose a sequence {un} in G such that 0 6 un 6 u

and η̂(û − un) < 2−(n+4). Thus, for any positive integer p,

η(un+1 − un) 6 η̂(un+1 − û) + η̂(û − un) < 2−(n+3) (n = 1, 2, . . .)

implies that η(un+p − un) < 2−(n+2).

Let n be any positive integer and let wn,p = sup{um : n 6 m 6 n + p}. Then

0 6 wn,p − un = sup{um − un : n 6 m 6 n + p}

6 sup{|um − un| : n 6 m 6 n + p}

6

n+p−1∑

m=n

|um+1 − um|,

and so η(wn,p − un) < 2−(n+2). Since G is order-complete wn =
∨

m>n

um exists in G

and wn,p ↑ wn. This implies that 0 6 wn,p − un ↑ wn − un and so, since η is a Fatou

ℓ-quasi-norm, η(wn − un) 6 2−(n+2). Thus, for any positive integer q,

η(wn+q − un) 6 η(wn+q − un+q) + η(un+q − un)

6 2−(n+q+2) + 2−(n+2)

< 2−(n+1).

Since G is order-complete, there exists a w > 0 in G such that wn ↓ w. Now

|wn+q −un|
(0)
→ |w−un| as q → ∞, and so by Lemma 3, η(|w−un|) 6 2−(n+1). From

û − w = û − un + un − w, we have that η̂(û − w) < 2−n and, since n is any positive

integer, it follows that η̂(û − w) = 0. Let S = {v ∈ G+ : η(w − v) = 0}. Clearly, S

is non-empty. Assume that s = inf S ∈ G. The set L = {z ∈ G : η(z) = 0} is a solid

subgroup of G with the Fatou property and w − S ⊆ L. Now sup(w − S) = w − s

and so, since L has the Fatou property, w−s ∈ L. It follows that s > 0; for, if s = 0,

then η(w) = 0, and so η̂(û) = 0, which contradicts the fact that û 6∈ V̂ .
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Next, letW be any Fatou τ -neighborhood of 0 in G such thatW ⊆ V . Then there

exists a τ -continuous Fatou ℓ-quasi-norm, ̺ say, such that {x ∈ G : ̺(x) < 1} ⊆ W .

Let ξ(x) = max(̺(x), η(x)). Then ξ is a τ -continuous Fatou ℓ-quasi-norm and {x ∈

G : ξ(x) < 1} ⊆ W . By repeating the argument used above there exists an element

a in G+ such that ξ̂(û−a) = 0. This implies that η̂(û−a) = 0 and from the identity

a − w = a − û + û − w, it follows that η(a − w) = 0. Thus a ∈ S and so s 6 a.

This implies that 0 6 (s − û)+ 6 (a − u)+ and, since ξ̂((a − û)+) = 0 and ξ̂ is an

ℓ-quasi-norm, it follows that ξ̂((s − û)+) = 0. Hence (s − û)+ ∈ Ŵ for all Fatou

τ -neighborhoods W of 0 in G with W ⊆ V . This implies that (s − û)+ = 0 and so

0 < s 6 û; that is, G is order-dense in A(G).

By Theorem 1, Ĝ is order-complete and so, in particular, A(G) is Archimedean.

Thus û = sup{v ∈ G : 0 6 v 6 û}. We recall that û 6 u and so, since G is

order-complete, z = sup{v ∈ G : 0 6 v 6 û} exists in G. Since G is order-dense in

A(G), z = û which implies that G is an ideal in Ĝ. This completes the proof of the

theorem. �

In [2], Aliprantis and Burkinshaw gave a new proof of the following theorem due

to Fremlin ([11], Theorem 1).

Theorem F (Fremlin). Let (E, τ) be a Hausdorff locally solid vector lattice with

the Fatou property. Then

(i) E is order-dense in Ê, and

(ii) (Ê, τ̂ ) satisfies the Fatou property.

For a Hausdorff locally solid ℓ-group with the Fatou property, we have the follow-

ing.

Theorem 3. Let (G, τ) be a Hausdorff locally solid ℓ-group with the Fatou

property. Then

(i) G is order-dense in Ĝ, and

(ii) (Ĝ, τ̂ ) has the Fatou property.

P r o o f. Suppose first that G is order-complete. Then, by Theorem 2, the order

intervals of G are τ -complete and so G is an ideal in Ĝ by Lemma 2. In particular,

this implies that G is order-dense in Ĝ (cf. [1], p. 110).

The proof of (ii) and the proof of the theorem when G is not order-complete, follow

from the arguments used by Aliprantis and Burkinshaw to prove Theorem F and so

will be omitted. �

The topological approach to measure-theoretic studies and the applications of

topology to measure theory are very well-studied (see, for example, Drewnowski [10]
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and the references therein, Kalton [15] and Fremlin [11]). We continue this theme and

close this section with a version of the Nikodym boundedness theorem for functions

assuming values in a class of locally solid topological groups; our proof is order-

theoretic in nature (not related to the completion procedure of the group).

The Nikodym boundedness theorem, from measure theory, has received a great

deal of attention and has been generalized in several directions; its versions, for

example, for lattice-valued and vector-valued measures may be found in [19] and

[20], respectively.

Let us first briefly recall some definitions.

Let G be a Hausdorff topological group and R a ring of subsets of a set X .

A function µ : R → G is said to be (i) a measure if µ(∅) = 0 and µ(E ∪ F ) =

µ(E) + µ(F ) where E and F are in R with E ∩ F = ∅; (ii) exhaustive if for every

sequence {En} of pairwise disjoint sets in R, lim
n→∞

µ(En) = 0.

The notion of a submeasure, with enormous applications, has been extensively

studied by Drewnowski (see [10] and the references therein, [4], [16]). Group-valued

submeasures have been introduced by Khan and Rowlands [16] and their work has

been recently further investigated by Avallone and Valente [4].

Following Khan and Rowlands [16], a function µ on R with values in an ℓ-quasi-

normed group is a submeasure if µ(∅) = 0, µ(E ∪ F ) 6 µ(E) + µ(F ) for all E, F in

R with E ∩ F = ∅ and µ(E) 6 µ(F ) for all E, F in R with E ⊆ F . Clearly, in this

case µ(E) > 0 for all E in R.

Although Theorem 1 due to Drewnowski [10] has been proved in the context of

a quasi-normed group, his proof can be readily modified to the case of any Haus-

dorff topological group G; thereby, we achieve the following version of the Nikodym

boundedness theorem.

Theorem 4. Let M be a family of exhaustive G-valued measures on a σ-ring

R such that for each E ∈ R, {µ(E) : µ ∈ M} is a bounded subset of G. Then

{µ(E) : E ∈ R, µ ∈ M} is a bounded subset of G.

The assumption that R is a σ-ring is essential in the above theorem (see [10],

Example, p. 117).

The next result generalizes Theorem 4 to the case of group-valued submeasures.

Theorem 5. Let (G, q) be an ℓ-quasi-normed group and M be a family of G-

valued submeasures on a σ-ring R such that

sup
µ∈M

q(µ(E)) < +∞

for each E in R. Then sup
µ∈M,E∈R

q(µ(E)) < +∞.
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P r o o f. Let H be the group of all G-valued mappings on M . Clearly, H is

a commutative partially ordered group, the ordering being f 6 g if and only if

f(µ) 6 g(µ) for all µ ∈ M . Define the functional ϕ on H by

ϕ(f) = sup
µ∈M

q(f(µ)).

Note that ϕ is an R∗
+ -valued quasi-norm on H and ϕ(f) 6 ϕ(g) if 0 6 f 6 g.

Define a mapping ν : R → H by

ν(E)(µ) = µ(E).

Clearly, ν is an H-valued submeasure on R.

Suppose not; with the above notation, sup
E∈R

ϕ(ν(E)) = +∞. Thus, for each positive

integer n, there exists a set En inR such that ϕ(ν(En)) > n. Let E =
∞⋃

n=1
En, E ∈ R

and ϕ(ν(E)) = +∞. This implies that sup
µ

q(µ(E)) = +∞, which contradicts the

hypothesis. Thus sup
µ∈M,E∈R

q(µ(E)) is finite. �

4. The order-bound topology

Let G be an ℓ-group and let S be the family of all quasi-norms such that each

p ∈ S is bounded on order-bounded subsets of G. The topology τb induced by S

on G is the analogue of the order-bound topology in the theory of locally convex

partially ordered vector spaces, and so, in the sequel, we refer to τb as the order-

bound topology on G. It is easy to see that τb is the finest group topology on G such

that every order-bounded subset of G is topologically bounded.

Definition 1. A homomorphism ϕ of a topological ℓ-group (G, τ) into a topo-

logical group (H, ξ) is said to be order-bounded if it maps order-bounded subsets of

G into ξ-bounded sets.

Now, we obtain the following useful result.

Proposition 1. Let (G, τ) be a topological ℓ-group. Then the following state-

ments are equivalent:

(i) τb ⊆ τ ,

(ii) every order-bounded homomorphism of (G, τ) into a topological ℓ-group (H, ξ)

is continuous.
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P r o o f. (ii) ⇒ (i). The identity mapping of (G, τ) into (G, τb) is an order-

bounded homomorphism and so is continuous. It follows that τb ⊆ τ .

(i)⇒ (ii). Let p be any ξ-continuous quasi-norm. Then p◦ϕ is a quasi-norm on G

bounded on order-bounded sets. Thus p ◦ ϕ is τb-continuous and so is τ -continuous.

It follows that, for any ξ-neighborhood U of 0 in H , ϕ−1(U) is a τ -neighborhood of

0 in G; that is, ϕ is continuous, as required. �

Theorem 6. Let G be an ℓ-group. Then the order-bound topology on G is the

finest locally solid topology on G.

P r o o f. First we show that every locally solid topology on G is weaker than

τb. Let ξ be any locally solid topology on G. Then ξ is determined by the family

of all ξ-continuous ℓ-quasi-norms. Let q be any ξ-continuous ℓ-quasi-norm on G. If

z ∈ [−|x|, |x|], then q(z) 6 q(x). This implies that every order-bounded interval is

ξ-bounded and so ξ ⊆ τb.

We now prove that τb is locally solid.

Let η be any member of S. Since η is bounded on the order-bounded intervals,

we can use the same construction as that given by Kalton in [15] to define a new

quasi-norm |η|, as follows. For each a ∈ G with a > 0, let

η∗(a) = sup
06c6a

η(c),

and define

|η|(a) = inf{η∗(b) : −b 6 a 6 b}.

Clearly, |η| is bounded on order-bounded sets; also |η|(a) = η∗(a) for all a > 0.

This implies that |η|(|a|) = |η|(a) (a ∈ G), and so the topology τ ′
b defined by the

quasi-norms {|η|} (η ∈ S) is locally solid. Thus by the first part of the proof τ ′
b ⊆ τb.

On the other hand, if U is any τb-neighborhood of 0 in G, then there exists a q ∈ S

and a positive number ε such that {x : q(x) < ε} ⊆ U . Now q(x) 6 2|q|(x) ([15],

Lemma 3), and so we have {x : |q|(x) < ε/2} ⊆ U . This implies that τb ⊆ τ ′
b and so

τb = τ ′
b. Thus τb is locally solid, as required. �
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