Previous |  Up |  Next

Article

Keywords:
real hypersurfaces; local symmetry; derivations; Kulkarni-Nomizu product
Summary:
This paper consists of two parts. In the first, we find some geometric conditions derived from the local symmetry of the inverse image by the Hopf fibration of a real hypersurface $M$ in complex space form $M_m(4\epsilon )$. In the second, we give a complete classification of real hypersurfaces in $M_m(4\epsilon )$ which satisfy the above geometric facts.
References:
[1] J. Berndt: Real hypersurfaces with constant principal curvatures in a complex hyperbolic space. J.  Reine Angew. Math. 395 (1989), 132–141. MR 0983062
[2] J. Berndt: Real hypersurfaces in quaternionic space forms. J.  Reine Angew. Math. 419 (1991), 9–26. MR 1116915 | Zbl 0718.53017
[3] J.  Berndt, Y. J.  Suh: Real hypersurfaces in complex two-plane Grassmannians. Monatsh. Math. 127 (1999), 1–14. DOI 10.1007/s006050050018 | MR 1666307
[4] J.  Berndt, Y. J.  Suh: Isometric flows on real hypersurfaces in complex two-plane Grassmannians. Monatsh. Math. 137 (2002), 87–98. DOI 10.1007/s00605-001-0494-4 | MR 1937621
[5] B. Y. Chen, G. D. Ludden, and S. Montiel: Real submanifolds of a Kaehler manifold. Algebras Groups Geom. 1 (1984 1984), 176–212. MR 0760492
[6] U.-H. Ki, Y. J. Suh: On real hypersurfaces of a complex space form. Math. J.  Okayama Univ. 32 (1990), 207–221. MR 1112028
[7] U.-H. Ki, Y. J. Suh: On a characterization of real hypersurfaces of type  $A$ in a complex space form. Canad. Math. Bull. 37 (1994), 238–244. DOI 10.4153/CMB-1994-035-8 | MR 1275710
[8] S.  Kobayashi, K.  Nomizu: Foundations of Differential Geometry. Interscience, New York-London-Sydney, 1963. MR 0152974
[9] M. Kimura: Real hypersurfaces and complex submanifolds in complex projective space. Trans. Amer. Math. Soc. 296 (1986), 137–149. DOI 10.1090/S0002-9947-1986-0837803-2 | MR 0837803 | Zbl 0597.53021
[10] M. Kimura, S. Maeda: On real hypersurfaces of complex projective space  II. Tsukuba J.  Math. 15 (1994), 547–561. MR 1138204
[11] S. M.  Lyu, J. D.  Pérez, and Y. J.  Suh: On real hypersurfaces in a quaternionic hyperbolic space in terms of the derivative of the second fundamental tensor. Acta Math. Hungarica 97 (2002), 145–172. DOI 10.1023/A:1020819214682 | MR 1932801
[12] Y. Maeda: On real hypersurfaces of a complex projective space. J. Math. Soc. Japan 28 (1976 1976), 529–540. MR 0407772
[13] S. Montiel: Real hypersurfaces of a complex hyperbolic space. J.  Math. Soc. Japan 37 (1985), 515–535. DOI 10.2969/jmsj/03730515 | MR 0792990 | Zbl 0554.53021
[14] S. Montiel: Complete non-compact spacelike hypersurfaces of constant mean curvature in de Sitter space. J.  Math. Soc. Japan 55 (2003), 915–938. DOI 10.2969/jmsj/1191418756 | MR 2003752
[15] S. Montiel, A. Romero: On some real hypersurfaces of a complex hyperbolic space. Geom. Dedicata 20 (1986), 245–261. DOI 10.1007/BF00164402 | MR 0833849
[16] M. Okumura: On some real hypersurfaces of a complex projective space. Trans. Amer. Math. Soc. 212 (1975), 355–364. DOI 10.1090/S0002-9947-1975-0377787-X | MR 0377787 | Zbl 0288.53043
[17] B. O’Neill: The fundamental equation of a submersion. Michigan Math.  J. 13 (1966), 459–469. DOI 10.1307/mmj/1028999604 | MR 0200865
[18] M. Ortega, J. D. Pérez, and Y. J. Suh: Real hypersurfaces with constant totally real sectional curvatures in a complex space form. Czech. Math.  J. 50(125) (2000), 531–537. DOI 10.1023/A:1022881510000 | MR 1777474
[19] M.  Ortega, J. D. Pérez, and Y. J.  Suh: Real hypersurfaces in quaternionic projective space with commuting tangent Jacobi operators. Glasgow Math.  J. 45 (2003), 51–65. DOI 10.1017/S0017089502001015 | MR 1972696
[20] J. D.  Pérez, Y. J.  Suh: Real hypersurfaces of quaternionic projective space satisfying $\nabla _{U_i}R=0$. Diff. Geom. Appl. 7 (1997), 211–217. DOI 10.1016/S0926-2245(97)00003-X | MR 1480534
[21] D. J. Sohn, Y. J. Suh: Classification of real hypersurfaces in complex hyperbolic space in terms of constant $\phi $-holomorphic sectional curvatures. Kyungpook Math.  J. 35 (1996), 801–819. MR 1678228
[22] Y. J. Suh: A characterization of ruled real hypersurfaces in $P_m(\mathbb{C})$. J.  Korean Math. Soc. 29 (1992), 351–359. MR 1180662
[23] Y. J. Suh, R. Takagi: A rigidity for real hypersurfaces in a complex projective space. Tohoku Math.  J. 43 (1991), 501–507. DOI 10.2748/tmj/1178227424 | MR 1133864
[24] R. Takagi: On homogeneous real hypersurfaces of a complex projective space. Osaka J.  Math. 10 (1973), 495–506. MR 0336660
Partner of
EuDML logo