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Abstract. This paper consists of two parts. In the first, we find some geometric con-
ditions derived from the local symmetry of the inverse image by the Hopf fibration of a
real hypersurface M in complex space form Mm(4ε). In the second, we give a complete
classification of real hypersurfaces in Mm(4ε) which satisfy the above geometric facts.
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1. Introduction

A complex m-dimensional Kaehler manifold of constant holomorphic sectional

curvature 4ε is called a complex space form, which is denoted byMm(4ε). A complete

and simply connected complex space form is a complex projective space Pm(C ), a

complex Euclidean space Cm or a complex hyperbolic space Hm(C ), according as

ε = 1, ε = 0 or ε = −1. The induced almost contact metric structure of a real

hypersurfaceM of Mm(4ε) is denoted by (ϕ, ξ, η, g). From now on, unless otherwise

stated, the sign ε in Mm(4ε) will be denoted 1 or −1.

There exist many studies about real hypersurfaces of Mm(4ε). The classification

of homogeneous real hypersurfaces of a complex projective space Pm(C ) was given

by Takagi [24], who showed that these hypersurfaces of Pm(C ) could be divided

into six types which are said to be of type A1, A2, B, C, D, and E. Moreover,

Kimura in [9] proved that they are realized as the tubes of constant radius over

The second author was supported by DGICYT research project BFM 2001-2871-C04-01
and the first and the third authors were supported by grant Proj. No. R14-2002-003-
01001-0 from Korea Research Foundation, Korea 2006.
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Kaehler submanifolds if the structure vector field ξ is principal. Also Berndt [1]

showed recently that all real hypersurfaces with constant principal curvatures of a

complex hyperbolic spaceHm(C ) are realized as tubes of constant radius over certain

submanifolds when the structure vector field ξ is principal. In Hm(C ) they are said

to be of type A0, A1, A2, and B. Moreover, recently Berndt and the third author ([3],

[4]) have classified real hypersurfaces in complex two-plane GrassmanniansG2(Cm+2 )

satisfying certain geometric conditions, which are said to be of type A and B.

Now, let us consider the following condition for the shape operator A of M

in Mm(4ε) could satisfy

(1.1) (∇XA)Y = −ε{η(Y )ϕX + g(ϕX, Y )ξ},

for any tangent vector fields X and Y of M .

Maeda, [12], investigated the condition (1.1) and used it to find a lower bound

of ‖∇A‖ for real hypersurfaces in Pm(C ). In fact, it was shown that ‖∇A‖2 > (m−1)

for such hypersurfaces and the equality is attained if and only if the condition (1.1)

holds. Moreover, in this case it was known that M is locally congruent to one of

the homogeneous real hypersurfaces of type A1 and A2. Also Chen, Ludden and

Montiel [5] generalized this inequality to real hypersurfaces in Hm(C ) and showed

that the equality (1.1) holds if and only ifM is congruent to one of the types A0, A1,

and A2. Moreover, the present authors in [11] have also found that a lower bound

of ‖∇A‖2 for real hypersurfaces in quaternionic hyperbolic space Hm(Q) is given

by 24(m − 1).

Let us denote by S2m+1(1) (resp. H2m+1
1 (−1)) a (2m+1)-dimensional unit sphere

(resp. anti-de Sitter space) defined in such a way that

S2m+1(1) =

{

(z0, . . . , zm) ∈ Cm+1 :
m

∑

i=0

zizi = 1

}

(resp. H2m+1(−1) = {(z0, . . . , zm) ∈ Cm+1 : −z0z0 +
m
∑

i=1

zizi = −1}), which is well
known bundle space of the Hopf map

π′ : S2m+1(1) → Pm(C ) (resp. H2m+1
1 (−1)) → Hm(C )).

Then we say that S2m+1(1) (resp. H2m+1
1 (−1)) is a (resp. Lorentzian) Hopf hyper-

surface of Cm+1 with Hopf vector field with a distinguished (resp. time-like) unit

vector field on S2m+1(1) (resp. H2m+1
1 (−1)) tangent to the fibre of the Hopf map π′.

Given a real hypersurface ofMm(4ε), one can construct a (resp. Lorentzian) hyper-

surface M in S2m+1(1) (resp. H2m+1
1 (−1)) which is a principal S1-bundle (resp. S1

1-

bundle) over M with (resp. time-like) totally geodesic fibers and the projection
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π : M → M in such a way that the diagram

M
ι′

//

π

��

S2m+1(1)(H2m+1
1 (−1))

π′

��

M ι
// Pm(C )(Hm (C ))

is commutative (ι, ι′ being the isometric immersions). Then it is seen (Chen, Ludden

and Montiel in [5], and Okumura in [16]) that the second fundamental tensor Ā

of M is parallel if and only if the second fundamental tensor A of M satisfies the

condition (1.1) or (1.2). ThusM is congruent to real hypersurfaces of type A1 or A2

in Pm(C ) or real hypersurfaces of type A0, A1 or A2 in Hm(C ).

On the hypersurface M , we consider the condition of local symmetry ∇R = 0,

which follows from the condition ∇Ā = 0 due to the Gauss equation. Here ∇ and
R denote the induced Riemannian connection and the curvature tensor defined onM

respectively.

Now let us suppose that M is a locally symmetric hypersurface in S2m+1(1) or

in H2m+1
1 (−1). Then we can verify that the real hypersurface M in Pm(C ) or

in Hm(C ) satisfies

(I) ϕ ∗ R = 0

and

(II) (∇∗A) ⊗ A = 0,

where * denotes an operator defined on the curvature tensor R of M as a derivation

in such a way that

g((ϕ ∗ R)(X, Y )Z, W ) = g(R(ϕX, Y )Z, W ) + g(R(X, ϕY )Z, W )

+ g(R(X, Y )ϕZ, W ) + g(R(X, Y )Z, ϕW ).

Moreover, the tensor product ⊗ in the formula (II) denotes the Kulkarni-Nomizu
product in End Λ2TM given by

{(∇∗

V A) ⊗ A}(X, Y ) = (∇∗

V A)X ∧ AY − (∇∗

V A)Y ∧ AX,

where (∇∗

XA)Y denotes

(∇∗

XA)Y = (∇XA)Y + ε{η(Y )ϕX + g(ϕX, Y )ξ}

887



and ∧ denotes the wedge product defined by

(X ∧ Y )(Z, W ) = g(X, Z)g(Y, W )− g(Y, Z)g(X, W )

for any vector fields X , Y , Z, V and W on M .

From such an expression the condition (1.1) is equivalent to

(1.2) ∇∗A = 0.

Then we know that the formula (II) is weaker than the condition (1.1), which gives

a lower bound of ‖∇A‖ for real hypersurfaces in Mn(4ε).

Now let us consider the converse problems related to such conditions and generalize

a result in Maeda [12] without the assumption that the structure vector ξ is principal.

We assert the following:

Theorem 1. Let M be a real hypersurface in Mm(4ε) (m > 3). If it satisfies

the formula (I), then M is locally congruent to one of the following:

(1) In case Mm(4) = Pm(C )

(A1) a tube of radius r over a hyperplane Pm−1(C ), where 0 < r < 1
2π,

(A2) a tube of radius r over a totally geodesic Pk(C ) (1 6 k 6 m − 2), where

0 < r < 1
2π.

(2) In case Mm(−4) = Hm(C )

(A0) a horosphere in Hm(C ), i.e., a Montiel tube,

(A1) a tube of a totally geodesic hyperplane Hk(C ) (k = 0 or m − 1),

(A2) a tube of a totally geodesic Hk(C ) (1 6 k 6 m − 2).

Now unless otherwise stated, we say simply that M is locally congruent to a real

hypersurface of type A when M is locally congruent to one of the real hypersurfaces

of type A1 and A2 for ε = 1 or to one of the real hypersurfaces of type A0, A1 and

A2 for ε = −1 respectively. Next, let us consider the formula (II), which is more

weaker notion than the geometric condition (1.1). Then we also assert the following:

Theorem 2. Let M be a real hypersurface in Mm(4ε) (m > 3). If it satisfies

the formula (II), then M is locally congruent to a real hypersurface of type A.

In Section 2 we recall some fundamental properties of real hypersurfaces inMm(4ε)

and find some geometric conditions derived from the locally symmetry of M

in S2m+1(1) (resp. H2m+1
1 (−1)). In Section 3 we give a proof of Theorem 1 and in

Sections 4 and 5 we give the proof of Theorem 2.
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2. Preliminaries

Let M be a real hypersurface of m-dimensional (m > 2) complex space form

Mm(4ε) of constant holomorphic sectional curvature 4ε and let C be a unit normal

vector field on a neighborhood of a point x inM . We denote by J an almost complex

structure of Mm(4ε). For a local vector field X on a neighborhood of x in M , the

images of X and C under the linear transformation J can be represented as

JX = ϕX + η(X)C, JC = −ξ,

where ϕ defines a skew-symmetric transformation on the tangent bundle TM of M ,

while η and ξ denote a 1-form and a vector field on a neighborhood of x in M ,

respectively. Moreover, it is seen that g(ξ, X) = η(X), where g denotes the induced

Riemannian metric on M . By properties of the almost complex structure J , the set

(ϕ, ξ, η, g) of tensors satisfies

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η(ϕX) = 0, η(ξ) = 1,

where I denotes the identity transformation. Usually, the set is said to be almost

contact metric structure. Furthermore the covariant derivatives of the structure

tensor ϕ and the structure vector fields ξ are given by

(2.1) (∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ, ∇Xξ = ϕAX,

where ∇ is the Riemannian connection of g and A denotes the shape operator with

respect to the unit normal vector field C on M .

Since the ambient space is of constant holomorphic sectional curvature 4ε, the

equations of Gauss and Codazzi are respectively given as follows

R(X, Y )Z = ε{g(Y, Z)X − g(X, Z)Y + g(ϕY, Z)ϕX − g(ϕX, Z)ϕY(2.2)

− 2g(ϕX, Y )ϕZ} + g(AY, Z)AX − g(AX, Z)AY,

(2.3) (∇XA)Y − (∇Y A)X = ε{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ}.

Now let M be a hypersurface mentioned in the introduction. Let us note that

TzM = Span{F}⊕F
⊥
, where z ∈ M and F = Jz for a induced complex structure J

defined on M from S2m+1(1) or H2m+1
1 (−1). Moreover, π∗F = 0 and π∗ is an

isomorphism on F
⊥
. For X ∈ Tπ(z)M we denote by XL the horizontal lift of X to z.

Moreover, fL denotes the horizontal lift on M of the function f on M defined by

fL(z) = f(π(z)) for any point z ∈ M . Then it can be easily seen that

g(X, Y )L = g(XL, Y L)
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for a Riemannian metric g defined on M . Moreover, the metric g on M is invariant

by the fiber compatible to S1 (or S1
1). Then by using the formula on a Riemannian

submersion given in [17] due to B. O’Neill we note that

(2.4) ∇XY = π∗(∇XLY L)

and

(2.5) ∇XLF = ∇F XL = JXL = (ϕX)L

for any tangent vector field X orthogonal to ξ on M , where ϕ and ∇ (resp. ∇)
denote the almost contact structure tensor and the Riemannian connection on M

(resp. on M).

Now let us give some examples of locally symmetric hypersurfaces, that is ∇R = 0,

in S2m+1(1) or in H2m+1
1 (−1) as follows:

Example 1. Let us consider a family of product hypersurfaces in the (2m + 1)-

dimensional unit sphere given by

Sp(c1) × S2m−p(c2) =

{

x ∈ S2m+1(1) :

p+1
∑

i=1

x2
i =

1

c1
,

2m+2
∑

i=p+2

x2
i =

1

c2

}

,

where c1 and c2 are positive constants such that 1/c1 + 1/c2 = 1. Then the second

fundamental tensor of every hypersurface of this family has two eigenvalues, say λ,

equal to ±√
c1 − 1 and of multiplicity p, and µ equal to ∓√

c2 − 1 and of multiplic-

ity 2m − p. Then the distribution corresponding to each eigenvalue is parallel and

the second fundamental tensor is parallel. So its curvature tensor R is parallel. Thus

these hypersurfaces are locally symmetric hypersurfaces in S2m+1(1).

Example 2. Now let us consider an anti-de Sitter space given by

H2m+1
1 (−1) =

{

x ∈ R2m+2
2 : −x2

1 − x2
2 +

2m+2
∑

i=3

x2
i = −1

}

.

Then we consider two families of product hypersurface in H2m+1
1 (−1) given by

Sr(c1) × H2m−r
1 (c2)

=

{

x ∈ H2m+1
1 (−1):

r+3
∑

i=3

x2
i =

1

c1
,−x2

1 − x2
2 +

2m+2
∑

i=r+4

x2
i =

1

c2

}

,
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Sr
1(c1) × H2m−r(c2)

=

{

x ∈ H2m+1
1 (−1): −x2

1 +

r+1
∑

i=3

x2
i =

1

c1
,−x2

2 +

2m+2
∑

i=r+2

x2
i =

1

c2

}

,

where c1 and c2 are constants such that 1/c1 + 1/c2 = −1 and c1 > 0, and c2 < 0.

Then in this kind of families the second fundamental tensor has two eigenvalues

λ = ±
√

c1 + 1, µ = ±
√

c2 + 1.

Then each corresponding distribution is parallel and the second fundamental tensor

is parallel. So its curvature tensor R is parallel.

If M is locally symmetric in the diagram mentioned in the Introduction, we have

the following.

Lemma 2.1. Let M be a locally symmetric hypersurface in S2m+1(1) or in

H2m+1
1 (−1). Then a real hypersurface M = π(M) in Pm(C ) or in Hm(C ) satisfies

the following

(I) ϕ ∗ R = 0 and

(II) (∇∗A) ⊗ A = 0,

where ⊗ denotes the Kulkarni-Nomizu product and π a fibration π : M → M com-

patible to the Hopf fibration π′ defined in the Introduction.

P r o o f. Now let us denote by R the curvature tensor of M in S2m+1(1) or

in H2m+1
1 (−1). Then by virtue of the local symmetry of M and using (2.4) and

(2.5), we have the formula (I) for any vertical vector field F defined on the fiber

of M

0 = F (g(R(XL, Y L)ZL, WL)

= − g(R((ϕX)L, Y L)ZL, WL) − g(R(XL, (ϕY )L)ZL, WL)

− g(R(XL, Y L)(ϕZ)L, WL) − g(R(XL, Y L)ZL, (ϕW )L)

= − g(R(ϕX, Y )Z, W )L − g(R(X, ϕY )Z, W )L − g(R(X, Y )ϕZ, W )L

− g(R(X, Y )Z, ϕW )L

for any vector fields X , Y , Z andW onM and XL (resp. Y L, ZL andWL) denoting

the horizontal lift of X (resp. Y , Z and W ) to M .

On the other hand, the equation of Gauss for a hypersurface M in S2m+1 or

in H2m+1
1 is given by

R(X, Y )Z = ε{g(Y , Z)X − g(X, Z)Y } + g(ĀY , Z)ĀX − g(ĀX, Z)ĀY
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for any tangent vector fields X, Y and Z onM . Then from the local symmetry ofM

we have the following

0 = g((∇XLR)(Y L, ZL)V L, WL)

= g((∇XLĀ)ZL, V L)g(ĀY L, WL) + g(ĀZL, V L)g((∇̄XLĀ)Y L, WL)

− g((∇XLĀ)Y L, V L)g(ĀZL, WL) − g(ĀY L, V L)g((∇XLĀ)ZL, WL)

for any vector fields X , Y , Z, V and W on M , where XL (resp. Y L, ZL, V L and

WL) also denotes the horizontal lift of X (resp. Y , Z and W ) to M . From this, if

we substitute the following

g((∇̄XLĀ)Y L, ZL) = XL(g(ĀY L, ZL) − g(Ā∇XLY L, ZL) − g(ĀY L,∇XLZL)

= (X(g(AY, Z)))L − g(Ā(∇XY )L, ZL) − g(ĀY L, (∇XZ)L)

− g(ϕX, Y )Lg(ĀF , ZL) − g(ĀY L, F )g(ϕX, Z)L

= g((∇XA)Y, Z)L + εg(ϕX, Y )Lη(Z)L + εg(ϕX, Z)Lη(Y )L

into the above equation, we have the following

{(∇∗

XA) ⊗ A}(Z, Y ) = (∇∗

XA)Z ∧ AY − (∇∗

XA)Y ∧ AZ = 0

for any vector fields X , Y and Z on M . From this, together with the definition of

the wedge product ∧ again, we have the formula (II). This completes the proof of
our Lemma. �

3. Real hypersurfaces satisfying the formula (I)

In this section we will give a complete classification of real hypersurfaces M

in Mm(4ε) satisfying the formula (I). Then this formula (I) can be written as

g(AY, Z)g((Aϕ − ϕA)X, W ) + g(AX, W )g((Aϕ − ϕA)Y, Z)(3.1)

−g(AY, W )g((Aϕ − ϕA)X, Z) − g(AX, Z)g((Aϕ − ϕA)Y, W ) = 0

for any vector fields X , Y , Z and W on M .

Now we assert the following
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Lemma 3.1. LetM be a real hypersurface inMm(4ε) satisfying the formula (I).

Then the structure vector field ξ is principal.

P r o o f. Let us suppose that there is a point where the vector ξ is not principal.

Then there exists a neighborhood M0 of this point, on which we can define a unit

vector field U orthogonal to ξ in such a way that

βU = Aξ − g(Aξ, ξ)ξ = Aξ − αξ,

where β denotes the length of the vector field Aξ−αξ and β(x) 6= 0 for any point x ∈
M0.

Let T0 be the distribution defined by the subspace T0(x) = {X ∈ TxM : X⊥ξx}
in the tangent subspace TxM of the real hypersurface M in Mm(4ε). Then we can

write

Aξ = αξ + βU,

where U is a unit vector field in T0 and α and β are smooth functions onM . Then we

consider an open setM0 = {x ∈ M : β(x) 6= 0}, on which we continue our discussion.
Putting Y = Z = ξ in (3.1), we get

(3.2) αg((Aϕ − ϕA)X, W ) − η(AW )g(AϕX, ξ) − η(AX)g(AϕW, ξ) = 0.

On the other hand, we calculate

η(AW ) = g(Aξ, W ) = αη(W ) + βg(U, W )

and

g(AϕX, ξ) = g(ϕX, Aξ) = βg(ϕX, U).

Substituting these into (3.2), we have

αg((Aϕ − ϕA)X, W ) − β{αη(W ) + βg(U, W )}g(ϕX, U)

−β{αη(X) + βg(U, X)}g(ϕW, U) = 0.(3.3)

Let L(ξ, U) be the distribution defined by the subspace Lx(ξ, U) in the tangent

space TxM spanned by vectors ξx and Ux at any point x in M0. Then we consider

the following two cases:

Case I: α 6= 0. Then by (3.3) we know that

g((Aϕ − ϕA)X, W ) = 0
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for any X, W ∈ L(ξ, U)⊥, where L(ξ, U)⊥ denotes the orthogonal complement of the

subspace L(ξ, U). Of course we know the following formulas:

g((Aϕ − ϕA)U, ξ) = g(AϕU, ξ) = βg(ϕU, U) = 0,

g((Aϕ − ϕA)ξ, ξ) = 0,

and

g((Aϕ − ϕA)ξ, U) = 0.

Replacing X and W by U in (3.3) and using α 6= 0, we get

g((Aϕ − ϕA)U, U) = 0.

Summing up the fomulas mentioned above, we have

g((Aϕ − ϕA)Y, Z) = 0

for any tangent vector fields Y and Z onM . That is, the shape operator A commutes

with the structure tensor ϕ. Now we have ϕAξ = βϕU and hence βϕU = Aϕξ = 0.

Because ϕU 6= 0, we get β = 0, which makes a contradiction on M0. Hence the

vector field ξ is principal, which concludes the proof of Lemma 3.1 in Case I.

Case II: α = 0. Then in this case from (3.2) we know that

η(AW )g(AϕX, ξ) + η(AX)g(AϕW, ξ) = 0.

From this, substituting Aξ = βU , we have

β2{g(U, W )g(ϕX, U) + g(U, X)g(U, ϕW )} = 0.

Now putting X = U , W = ϕU gives β2 = 0, which makes also a contradiction. In

this case ξ is a principal vector with zero principal curvature.

Summing up the above cases, we see that a real hypersurface M in Mm(4ε) sat-

isfying the condition (I) is a Hopf hypersurface, that is, its structure vector ξ is

principal. �

Next we suppose that the structure vector field ξ is principal with corresponding

principal curvature α. Then it is seen in [1], [6] and [12] that α is constant on M

and satisfies

(3.4) AϕA = εϕ +
1

2
α(Aϕ + ϕA),
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and hence, by (2.1) and (2.3), we get

(3.5) ∇ξA = −1

2
α(Aϕ − ϕA).

If the function α vanishes, (3.4) implies

(3.6) AϕAX = εϕX.

Moreover, by virtue of the equation of Codazzi (2.3), (3.5) implies the following for

α = 0

(3.7) (∇XA)ξ = −εϕX.

Putting Y = Z = ξ in (3.1) and using that ξ is principal, we have

(3.8) αg((Aϕ − ϕA)X, W ) = 0.

So for a non-zero constant function α the shape operator A commutes with the

structure tensor ϕ. Then by virtue of theorems given by Okumura [16] for ε = 1

and by Montiel and Romero [15] for ε = −1 we know that M is locally congruent to

type A1 or A2, or respectively, type A0, A1 or A2.

Now it remains only to consider the case α = 0. This means Aξ = 0. So we

can consider an orthonormal basis of eigenvectors of T0. Then by (3.6), we have the

following

Lemma 3.2. Let M be a real hypersurface in a complex space form Mm(4),

m > 3 satisfying the formula (I). If α = 0, then for some fixed eigenvalue λ of A on

the orthogonal complement of ξ and for the corresponding eigenspace Vλ a vector X

exist in Vλ such that ϕX ∈ Vλ. Moreover, such an eigenvalue λ is always nonzero.

P r o o f. Now let us consider the case ε = 1. Then by (3.6) we know

ϕX ∈ V1/λ

for any X ∈ Vλ. Here the eigenvalue λ can not be vanishing on M .

In fact, if the eigenvalue λ = 0 on a subset U in M , then (3.6) gives 0 = ϕX for

ε = 1, which makes a contradiction. So such a subset U should be empty.

On the other hand, contracting Y and Z in (3.1), we have

(3.9) h(Aϕ − ϕA)X − (A2ϕ − ϕA2)X = 0,

where h denotes the trace of the shape operator A of M .
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Now let us take an orthonormal basis {e1, e2, . . . , em−1, ϕe1, . . . , ϕem−1, ξ} in such
a way that Aei = λiei and Aϕei = (1/λi)ϕei, i = 1, . . . , m−1. Then putting X = ei

in (3.9), we have
( 1

λi
− λi

){

h −
( 1

λi
+ λi

)}

= 0.

Now suppose λi 6= 1/λi for each i = 1, . . . , m − 1. Then it follows that

h =
1

λi
+ λi.

On the other hand, we know that

h =

m−1
∑

i=1

g(Aei, ei) +

m−1
∑

i=1

g(Aϕei, ϕei) =

m−1
∑

i=1

(

λi +
1

λi

)

= (m − 1)h.

So it follows that h = 0 for m > 3, hence we have 1/λi = −λi for at least one

i ∈ {1, . . . , m − 1}, which concludes the proof of Lemma 3.2. �

Then by Lemma 3.2 we can take a principal curvature vector X ∈ Vβ such that

β2 = 1. Moreover, putting Y = Xi ∈ Vλi
in (3.1), we have

β
( 1

λi
− λi

)

{g(X, W )g(ϕXi, Z) − g(X, Z)g(ϕXi, W )} = 0.

From this, it follows that 1/λi = λi for each i = 1, . . . , m − 1. So the structure

tensor ϕ commutes with the shape operator A. Thus in this case M is locally

congruent to a tube of radius r = 1
4π over Pm−1(C ) (see [16] and [24]).

Now it remains to check the case where ε = −1 and α = 0. Then for every

i = 1, . . . , m − 1 we have

λi 6= − 1

λi
.

Thus the formula (3.1) and (3.9) for such a case ε = −1 imply

(3.10) h = − 1

λi
+ λi

for all i = 1, . . . , m − 1. This means that every principal curvature satisfies the

quadratic equation λ2−hλ−1 = 0. Moreover, by (3.10) and using the method given

in Lemma 3.2 for the definition of h, we know that h = 0.

In fact, for ε = −1 we see by (3.6) that wheneverX ∈ Vλ, λ 6= 0, then ϕX ∈ V−1/λ.

Summing up in (3.10) over the indices i = 1, . . . , m− 1, we obtain, analogously as in

the proof of Lemma 3.2, h = (m − 1)h and hence h = 0.
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So the quadratic equation reduces to λ2−1 = 0. This means thatM has 3 distinct

constant principal curvatures 0, 1 and −1 with multiplicities 1, m − 1, and m − 1

respectively. Thus by a theorem of Berndt [1] M is locally congruent to a real

hypersurface of type B. Then its Weingarten endomorphism A is given by

A =

























2 tanh2r 0
coth r

. . .

coth r

tanh r
. . .

0 tanh r

























where both principal curvatures coth r and tanh r have multiplicities m−1. Here we

can see that λµ − 1 = 0, where λ and µ denote coth r and tanh r respectively. But

we know that λ = 1 and µ = −1, which gives a contradiction. So we conclude that

there does not exist any real hypersurface M in complex hyperbolic space Hm(C )

satisfying the formula (I) when the function α vanishes identically.

Summing up all the above situations, we complete the proof of Theorem 1. �

4. A Key Lemma and a Proposition

Let us consider another geometric condition derived from the local symmetry ofM

given in the formula (II) of Lemma 2.1. Then the formula (II) can be written as

follows:

{(∇∗

V A) ⊗ A}(X, Y )(Z, W ) = {(∇∗

V A)X ∧ AY }(Z, W ) − {(∇∗

V A)Y ∧ AX}(Z, W )

for any X , Y , Z, V and W on M in Mm(4ε). Then by the expression of the deriv-

ative ∇∗ and using the definition of the wedge product ∧ the above formula can be
rewritten as the following

{g((∇V A)X, Z) + εg(ϕV, Z)η(X) + εg(ϕV, X)η(Z)}g(AY, W )(4.1)

+{g((∇V A)Y, W ) + εg(ϕV, W )η(Y ) + εg(ϕV, Y )η(W )}g(AX, Z)

−{g((∇V A)Y, Z) + εg(ϕV, Z)η(Y ) + εg(ϕV, Y )η(Z)}g(AX, W )

−{g((∇V A)X, W ) + εg(ϕV, W )η(X) + εg(ϕV, X)η(W )}g(AY, Z) = 0

for any vector fields X , Y , Z, V and W on M . Putting V = ξ into (4.1), we get

g((∇ξA)Y, Z)AX − g((∇ξA)X, Z)AY + g(AY, Z)(∇ξA)X(4.2)

−g(AX, Z)(∇ξA)Y = 0.
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Then from (4.2), also putting Z = ξ and taking X, Y ∈ T0, we have

g((∇ξA)ξ, Y )AX − g((∇ξA)ξ, X)AY(4.3)

+β{g(Y, U)(∇ξA)X − g(X, U)(∇ξA)Y } = 0,

where we have put Aξ = αξ + βU and U ∈ T0 is a certain vector field defined on

M0 = {x ∈ M : β(x) 6= 0}.
Next putting Y = Z = ξ and taking X ∈ T0 in (4.2), we have

(4.4) α(∇ξA)X = g((∇ξA)ξ, X)Aξ + βg(X, U)(∇ξA)ξ − dα(ξ)AX,

where dα(ξ) = g((∇ξA)ξ, ξ). Multiplying (4.3) by α and taking account of (4.4), we

have

{αg((∇ξA)ξ, Y ) − βdα(ξ)g(Y, U)}AX(4.5)

−{αg((∇ξA)ξ, X) − βdα(ξ)g(X, U)}AY

+β{g(Y, U)g((∇ξA)ξ, X) − g(X, U)g((∇ξA)ξ, Y )}Aξ = 0.

From this, on the open subset M0 = {x ∈ M : β(x) 6= 0} we get

Lemma 4.1. Let M be a real hypersurface in Mm(4ε) (m > 3) satisfying the

formula (II). Then the function α = g(Aξ, ξ) identically vanishes.

P r o o f. Let us consider the open setM1 inM0 defined by {x ∈ M0 : α(x) 6= 0}.
Of course on such an open subset M0 the structure vector ξ is not principal and the

function β is non-vanishing. Putting Y = ξ in (4.5), we get

(4.6) dα(ξ)AX = g((∇ξA)ξ, X)Aξ

for any X ∈ T0. So if we suppose dα(ξ) 6= 0, which is equivalent to g((∇ξA)ξ, ξ) 6= 0,

then for any X ∈ T0

AX = γg((∇ξA)ξ, X)Aξ = f(X)ξ + g(X)U,

where we have put γ = dα(ξ)−1 and f(X) (resp. g(X)) denotes αγg((∇ξA)ξ, X)

(resp. βγg((∇ξA)ξ, X)). From this, together with Aξ = αξ + βU , we know that

rankA 6 2. Then for the case where ε = 1 by a theorem of the third author in [22]

we see that M is congruent to a ruled real hypersurface in Pm(C ). For ε = −1 by

theorems of Ortega, Sohn and two last named authors in [18] and [21] we know that
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M is also congruent to a ruled real hypersurface in Hm(C ). Then from the expression

of the shape operator of ruled real hypersurfaces it follows that

AU = βξ, β 6= 0.

By putting X = U in (4.6), we know that dα(ξ)AU = αδξ +βδU , δ = g((∇ξA)ξ, U).

From this, together with the above fomula we have βδ = 0. So it follows that δ = 0.

This and (4.6) imply AU = 0, which makes a contradiction. Thus we should have

dα(ξ) = 0. So by (4.6) on M1, we know that

(4.7) g((∇ξA)ξ, X) = 0

for any X ∈ T0. From this, together with dα(ξ) = g((∇ξA)ξ, ξ) = 0, we can deduce

(∇ξA)ξ = 0.

From this, together with (4.2) we have for any Y , Z on M1

g((∇ξA)Y, Z)Aξ − g(Aξ, Z)(∇ξA)Y = 0.

Taking the inner product with ξ and using the assumption α 6= 0 on M1, we have

(4.8) ∇ξA = 0.

Then by virtue of a Lemma given by Kimura and Maeda [10] we know that the

formula (4.8) implies that the structure vector ξ is principal. Thus such an open

subset M1 = {x ∈ M0 : α(x) 6= 0} can not exist. Then on the open set M0 we

conclude that the function α vanishes identically. �

By virtue of Lemma 4.1 we are going to prove the following Proposition.

Proposition 4.2. Let M be a real hypersurface in Mm(4ε) (m > 3) satisfying

the formula (II). Then the structure vector ξ is principal.

P r o o f. Now let us continue our discussion on the open set M0. By Lemma 4.1

we know that the function α vanishes and the function β is non-vanishing on M0.

Thus we may write

Aξ = βU.

Now from (4.2) we know that

(4.9) (∇ξA)ξ = −g((∇ξA)ξ, U)U.
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Differentiating Aξ = βU gives

(∇XA)ξ + AϕAX = (Xβ)U + β∇XU,

from this putting X = ξ, we have

(∇ξA)ξ + βAϕU = (ξβ)U + β∇ξU.

Now if we put Y = W = V = ξ in (4.1) and use (2.1), we get

g((∇ξA)ξ, Z)g(AX, ξ) + g((∇ξA)X, ξ)g(Aξ, Z) = 0,

from which, using (4.9) in this obtained equation, we get

βg((∇ξA)ξ, U) = 0.

From this, together with (4.9), we have on M0

(∇ξA)ξ = 0.

Then substituting this into (4.3), we have

β{g(Y, U)(∇ξA)X − g(X, U)(∇ξA)Y } = 0

for any X, Y ∈ T0. So it follows for any X ∈ T0

(∇ξA)X = g(X, U)(∇ξA)U.

This gives (∇ξA)X = 0 for any X ∈ L(ξ, U)⊥, where L(ξ, U)⊥ denotes the orthogo-

nal complement of the subspace L(ξ, U) spanned by ξ and U in TxM at any point x

in M0.

Now we want to show that ∇ξA = 0. In order to do this it suffices to show that

(∇ξA)U = 0.

Since we know thatg((∇ξA)U, ξ) = g((∇ξA)ξ, U) = 0, we can put

(∇ξA)U = λU = g((∇ξA)U, U)U.

Thus by the equation of Codazzi (2.3), we have

(4.10) (∇UA)ξ = λU − εϕU.
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In order to prove the result it remains to show that λ = 0. Now let us put V = U

and X = ξ in (4.1). Then we have

{g((∇UA)ξ, Z) + εg(ϕU, Z)}g(AY, W )

+{g((∇UA)Y, W ) + εg(ϕU, W )η(Y ) + εg(ϕU, Y )η(W )}g(Aξ, Z)

−{g((∇UA)Y, Z) + εg(ϕU, Z)η(Y ) + εg(ϕU, Y )η(Z)}g(Aξ, W )

−{g((∇UA)ξ, W ) + εg(ϕU, W )}g(AY, Z) = 0.

Substituting (4.9) into this equation, we have

λg(U, Z)g(AY, W ) + {g((∇UA)Y, W ) + εg(ϕU, W )η(Y )

+εg(ϕU, Y )η(W )}g(Aξ, Z) − {g((∇UA)Y, Z) + εg(ϕU, Z)η(Y )

εg(ϕU, Y )η(Z)}g(Aξ, W ) − λg(U, W )g(AY, Z) = 0.

From this, taking skew symmetric Y and Z, and putting W = U and replacing Z

by W in the obtained equation, we get

g((∇UA)Y, U)g(Aξ, W ) + λg(U, W )g(AY, U)

−g((∇UA)W, U)g(Aξ, Y ) − λg(U, Y )g(AW, U) = 0.

From this, putting Y = ξ and using Lemma 4.1 and the fact that the function β is

non-vanishing on M0, we have for any tangent vector W on M

g(U, W ){g((∇UA)ξ, U) + λ} = 0,

from this, using (4.10), we have λ = 0. Then from (2.3) and (4.10) it follows that

(∇ξA)U = 0. From this, together with the above fact, we conclude that ∇ξA = 0.

So by a theorem of Kimura and Maeda [10], the structure vector ξ is principal. This

proves our assertion. �

5. Real hypersurfaces satisfying the formula (II)

By Proposition 4.2 we know that the structure vector ξ of any real hypersurface

in Mm(4ε) satisfying the condition (II) is principal. So in this section by virtue

of this Proposition we will completely determine all real hypersurfaces in Pm(C ) or

in Hm(C ) satisfying the formula (II).
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Putting Y = W = ξ in (4.1) and using (3.5), we have

αg((∇V A)X, Z) = α{αg(ϕAV, Z) − g(AϕAV, Z)}η(X)(5.1)

+ α{αg(ϕAV, X) − g(AϕAV, X)}η(Z).

From this we can consider the following two cases.

Case 1: α 6= 0. Then in this case we know from (5.1) that

(∇V A)X = α{η(X)ϕAV + g(ϕAV, X)ξ}
− {η(X)AϕAV + g(AϕAV, X)ξ}.

Now by skew-symmetry and using the equation of Codazzi, we have

ε{η(V )ϕX − η(X)ϕV − 2g(ϕV, X)ξ}
= α{η(X)ϕAV − η(V )ϕAX} + α{g(ϕAV, X) − g(ϕAX, V )}ξ

− {η(X)AϕAV − η(V )AϕAX} − {g(AϕAV, X) − g(AϕAX, V )}ξ.

From this, putting X = ξ and taking symmetric part, we have for any vector field V

on M

α(Aϕ − ϕA)V = 0.

So in this case we see that the structure tensor ϕ commutes with the second fun-

damental tensor A. Thus by a theorem of Okumura [16] for ε = 1, M is locally

congruent to a real hypersurface of type A1 or A2 and by a theorem of Montiel and

Romero [15] for ε = −1, M is of type A0, A1 or A2.

Case II: α = 0. Differentiating (4.1) along the vector E and then putting Y = ξ

in the obtained equation, we have

{g((∇E∇V A)ξ, W ) − 2εg(AE, V )η(W ) + εη(V )g(AE, W )}g(AX, Z)(5.2)

−{g((∇E∇V A)ξ, Z) − 2εg(AE, V )η(Z) + εη(V )g(AE, Z)}g(AX, W )

−{g((∇∗

V A)X, Z)g(ϕE, W ) + g((∇∗

V A)X, W )g(ϕE, Z)} = 0

for any vector fields E, V , W , X and Z on M , where we have used (2.1) and the

formula (∇XA)ξ = −εϕX in (3.7).

On the other hand, the well-known Ricci-identity gives

(∇X∇Y A)ξ − (∇Y ∇XA)ξ = R(X, Y )(Aξ) − A(R(X, Y )ξ)(5.3)

= − A(R(X, Y )ξ)

= − ε{η(Y )AX − η(X)AY }
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for any vector fields X and Y onM , where we have used the equation of Gauss (2.2)

and the fact that Aξ = 0 in this case. So by taking skew-symmetry of (5.2) with

respect to E and V and using the Ricci-identity (5.3), we have

−g((∇∗

V A)X, Z)g(ϕE, W ) + g((∇∗

EA)X, Z)g(ϕV, W )

+g((∇∗

V A)X, W )g(ϕE, Z) − g((∇∗

EA)X, W )g(ϕV, Z) = 0.

From this, putting W = ϕE, we have

−g((∇∗

V A)X, Z)g(ϕE, ϕE) + g((∇∗

EA)X, Z)g(ϕV, ϕE)(5.4)

+g((∇∗

V A)X, ϕE)g(ϕE, Z) − g((∇∗

EA)X, ϕE)g(ϕV, Z) = 0.

Now we consider an orthonormal basis given by {e1, . . . , em−1, em, . . . , e2m−2,

e2m−1}, where ξ = e2m−1. Then taking E = ei and summing up from i = 1

to i = 2m − 1 in (5.4), we have

(2m − 4)g((∇∗

V A)X, Z) + η(V )g((∇∗

ξA)X, Z) + η(Z)g((∇∗

V A)X, ξ)(5.5)

+

2m−1
∑

i=1

g((∇∗

ei
A)X, ϕei)g(ϕV, Z) = 0.

The second term of (5.5) becomes

η(V )g((∇∗

ξA)X, Z) = η(V )g((∇ξA)X, Z)

= η(V )g((∇XA)ξ + εϕX, Z) = 0,

where we have used (3.7). Similarly, by (3.7) the third term also vanishes.

On the other hand, by the equation of Codazzi (2.3) we have

2m−1
∑

i=1

g((∇ei
A)X, ϕei) =

m−1
∑

i=1

g((∇ei
A)X, ϕei) −

m−1
∑

i=1

g((∇ϕei
A)X, ei)

=

m−1
∑

i=1

g((∇ei
A)ϕei − (∇ϕei

A)ei, X)

= − 2(m − 1)εη(X),

where we have taken an orthonormal basis that e1, . . . , em−1, em = ϕe1, . . . , e2m−2 =

ϕem−1, and ξ = e2m−1. So it follows that

2m−1
∑

i=1

g((∇∗

ei
A)X, ϕei)g(ϕV, Z)

=

2m−1
∑

i=1

{g((∇ei
A)X, ϕei) + εη(X)g(ϕei, ϕei)}g(ϕV, Z) = 0.
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Accordingly, substituting these formulas into (5.5), we have for m > 3

∇∗

V A = 0.

Thus for ε = 1 by a theorem of Maeda [12] M is congruent to real hypersurfaces of

type A1 or A2. For ε = −1 by a theorem of Chen, Ludden and Montiel [5] M is

congruent to real hypersurfaces of type A0, A1, A2. This completes the proof of

Theorem 2 in the Introduction.
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