[3] F. Esteva, L. Godo:
Monoidal $t$-norm based logic: Towards a logic for left-continuous $t$-norms. Fuzzy Sets Syst. 124 (2001), 271–288.
MR 1860848
[4] P. Hájek:
Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, 1998.
MR 1900263
[6] Y. B. Jun:
On $LI$-ideals and prime $LI$-ideals of lattice implication alebras. J. Korean Math. Soc. 36 (1999), 369–380.
MR 1690028
[7] Y. B. Jun, E. H. Roh, Y. Xu:
$LI$-ideals in lattice implication algebras. Bull. Korean Math. Soc. 35 (1998), 13–24.
MR 1609010
[8] Y. B. Jun, Y. Xu:
Fuzzy $LI$-ideals in lattice implication algebras. J. Fuzzy Math. 7 (1999), 997–1003.
MR 1734015 |
Zbl 0972.03550
[13] G. J. Wang: Non-classical Mathematical Logic and Approximate Reasoning. Science Press, Beijing, 2000. (Chinese)
[14] G. J. Wang:
$MV$-algebras, $BL$-algebras, $R_0$-algebras and multiple-valued logic. Fuzzy Systems and Mathematics 16 (2002), 1–15. (Chinese)
MR 1911031
[15] Y. Xu:
Lattice implication algebras. J. South West Jiaotong University 1 (1993), 20–27.
Zbl 0966.03524
[16] Y. Xu, K. Y. Qin:
On filters of lattice implication algebras. J. Fuzzy Math. 1 (1993), 251–260.
MR 1230317
[17] Y. Xu, D. Ruan, K. Y. Qin, J. Li:
Lattice-valued Logic. An alternative approach to treat fuzziness and incomparability. Studies in Fuzzines and Soft Computing 132, Springer-Verlag, , 2003.
MR 2027329
[18] X. H. Zhang, W. H. Li: On fuzzy logic algebraic system $MTL$. Advances in Systems and Applications 5 (2005), 475–483.