Previous |  Up |  Next

Article

Keywords:
cohomology; natural operation
Summary:
The aim of this note, which raises more questions than it answers, is to study natural operations acting on the cohomology of various types of algebras. It contains a lot of very surprising partial results and examples.
References:
[1] C. Berger: Combinatorial models for real configuration spaces and $E_n$-operads. In: Operads: Proceedings of Renaissance Conferences. Contemporary Math., Vol. 202, J. L.  Loday, J. D.  Stasheff, and A. A.  Voronov (eds.), Am. Math. Soc., 1997, pp. 37–52. MR 1436916
[2] F. Chapoton, M. Livernet: Pre-Lie algebras and the rooted trees operad. Internat. Math. Res. Not. 8 (2001), 395–408. MR 1827084
[3] I. Ciocan-Fontanine, M. Kapranov: Derived Hilbert schemes. J.  Am. Math. Soc. 15 (2002), 787–815. DOI 10.1090/S0894-0347-02-00399-5 | MR 1915819
[4] I. Ciocan-Fontanine, M. M.  Kapranov: Derived Quot schemes. Ann. Sci. Éc. Norm. Supér, IV.  Sér. 34 (2001), 403–440. DOI 10.1016/S0012-9593(01)01064-3 | MR 1839580
[5] P. Deligne: A letter to Stasheff, Gerstenhaber, May, Schechtman and Drinfeld. Unpublished, 1993.
[6] A. Dzhumadil’daev, C. Löfwall: Trees, free right-symmetric algebras, free Novikov algebras and identities. Homotopy Homology Appl. 4 (2002), 165–190. MR 1918188
[7] Z. Fiedorowicz: The symmetric bar construction. Preprint, available from the author’s home page.
[8] T. F.  Fox, M. Markl: Distributive laws, bialgebras, and cohomology. Operads: Proceedings of Renaissance Conferences. Contemporary Math., Vol.  202, J.-L.  Loday, J. D.  Stasheff, and A. A.  Voronov (eds.), 1997, pp. 167–205. MR 1436921
[9] M. Gerstenhaber: The cohomology structure of an associative ring. Ann. Math. 78 (1963), 267–288. DOI 10.2307/1970343 | MR 0161898 | Zbl 0131.27302
[10] M. Gerstenhaber, S. D.  Schack: Algebraic cohomology and deformation theory. In: Deformation Theory of Algebras and Structures and Applications, Kluwer, Dordrecht, 1988, pp. 11–264. MR 0981619
[11] M. Gerstenhaber, A. A.  Voronov: Higher operations on the Hochschild complex. Funct. Anal. Appl. 29 (1995), 1–5. (Russian) DOI 10.1007/BF01077036 | MR 1328534
[12] E. Getzler, J. D. S.  Jones: Operads, homotopy algebra, and iterated integrals for double loop spaces. Preprint hep-th/9403055, March  1994.
[13] V. Ginzburg, M. M.  Kapranov: Koszul duality for operads. Duke Math.  J. 76 (1994), 203–272. DOI 10.1215/S0012-7094-94-07608-4 | MR 1301191
[14] V. Hinich: Tamarkin’s proof of Kontsevich formality theorem. Forum Mathematicum 15 (2003), 591–614. MR 1978336 | Zbl 1081.16014
[15] P. Hu: Higher string topology on general spaces. Proc. London Math. Soc. 93 (2006), 515–544. DOI 10.1112/S0024611506015838 | MR 2251161 | Zbl 1103.55008
[16] P. Hu, I. Kříž, and A. A.  Voronov: On Kontsevich’s Hochschild cohomology conjecture. Compos. Math. 142 (2006), 143–168. MR 2197407
[17] R. M.  Kaufmann: On spineless cacti, Deligne’s conjecture and Connes-Kreimer’s Hopf algebra. Preprint  math.QA/0308005, August  2003. MR 2288726 | Zbl 1140.55008
[18] A. A.  Klyachko: Lie elements in the tensor algebra. Sib. Math.  J. 15 (1974), 914–920. DOI 10.1007/BF00966559
[19] J. Kock, B. Toën: Simplicial localization of monoidal structures, and a non-linear version of Deligne’s conjecture. Compos. Math. 141 (2005), 253–261. MR 2099778
[20] M. Kontsevich, Y. Soibelman: Deformations of algebras over operads and Deligne’s conjecture. Math. Phys. Stud. 21 (2000), 255–307. MR 1805894
[21] I. Kříž, J. P.  May: Operads, Algebras, Modules and Motives. Astérisque, Vol.  233. Société Mathématique de France, 1995. MR 1361938
[22] T. Lada, M. Markl: Symmetric brace algebras. Appl. Categorical Structures 13 (2005), 351–370. DOI 10.1007/s10485-005-0911-2 | MR 2175956
[23] M. Markl: Cotangent cohomology of a category of deformations. J.  Pure Appl. Algebra 113 (1996), 195–218. DOI 10.1016/0022-4049(95)00152-2 | MR 1415558 | Zbl 0865.18011
[24] M. Markl: Models for operads. Commun. Algebra 24 (1996), 1471–1500. DOI 10.1080/00927879608825647 | MR 1380606 | Zbl 0848.18003
[25] M. Markl: The existence of intrinsic brackets on the cohomology of bialgebras. Preprint  math.AT/0411456, November  2004.
[26] M. Markl, S. Shnider, and J. D.  Stasheff: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, Vol. 96. American Mathematical Society, Providence, 2002. MR 1898414
[27] J. P.  May: The Geometry of Iterated Loop Spaces. Lecture Notes in Mathematics, Vol.  271. Springer-Verlag, New York, 1972. MR 0420610
[28] J. E.  McClure, J. H.  Smith: A solution of Deligne’s Hochschild cohomology conjecture. In: Proceedings of the JAMI  conference on Homotopy Theory. Contemp. Math. Vol. 293, 2002, pp. 153–193. MR 1890736
[29] J. E.  McClure, J. H.  Smith: Multivariable cochain operations and little $n$-cubes. J.  Am. Math. Soc. 16 (2003), 681–704. DOI 10.1090/S0894-0347-03-00419-3 | MR 1969208
[30] P. Salvatore: Configuration spaces with summable labels. In: Cohomological Methods in Homotopy Theory. Proceedings of the Barcelona conference on algebraic topology (BCAT), Bellaterra, Spain, June 4-10, 1998. Prog. Math.  196, J. Aguadé (ed.), Birkhäuser-Verlag, Basel, 2001, pp. 375–395. MR 1851264 | Zbl 1034.55007
[31] M. Schlessinger, J. D.  Stasheff: The Lie algebra structure of tangent cohomology and deformation theory. J.  Pure Appl. Algebra 38 (1985), 313–322. DOI 10.1016/0022-4049(85)90019-2 | MR 0814187
[32] D. Tamarkin, B. Tsygan: Cyclic formality and index theorem. Lett. Math. Phys. 56 (2001), 85–97. DOI 10.1023/A:1010838604927 | MR 1854129
[33] D. E.  Tamarkin: Another proof of M. Kontsevich formality theorem. Preprint  math.QA/9803025, March  1998.
[34] D. E.  Tamarkin: Formality of chain operad of little discs. Lett. Math. Phys. 66 (2003), 65–72. DOI 10.1023/B:MATH.0000017651.12703.a1 | MR 2064592 | Zbl 1048.18007
[35] P. van der Laan: Operads up to homotopy and deformations of operad maps. Preprint  math.QA/0208041, August  2002.
[36] A. A.  Voronov: Homotopy Gerstenhaber algebras. In: Conférence Moshé Flato  1999: Quantization, deformations, and symmetries, II. Math. Phys. Stud. Vol. 22, G. Dito (ed.), Kluwer Academic Publishers, Providence, 2000, pp. 307–331. MR 1805923 | Zbl 0974.16005
Partner of
EuDML logo