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Abstract. The aim of this note, which raises more questions than it answers, is to study
natural operations acting on the cohomology of various types of algebras. It contains a lot
of very surprising partial results and examples.

Keywords: cohomology, natural operation

MSC 2000 : 55S25, 18D50

Introduction

In this note, all algebraic objects will be defined over a fixed field k of characteris-
tic zero. An algebra means an algebra over a quadratic Koszul operad P [26, II.3.3].

This generality covers all “reasonable” algebras—associative, Lie, commutative as-
sociative, Poisson, Gerstenhaber, Leibniz, &c.

By the cohomology of a P-algebra A we mean the operadic cohomology H∗
P(A;A)

of A with coefficients in itself [26, II.3.100], defined as the cohomology of the cochain

complex C∗P(A;A) = (C∗P(A;A), dP) recalled in A.6 of the appendix to this note. The
complex C∗P(A;A) generalizes the “standard constructions” and H∗

P(A;A) the “clas-
sical” cohomology (Hochschild for associative algebras, Chevalley-Eilenberg for Lie
algebras, Harrison for associative commutative algebras, &c.) In general, H∗

P(A;A)
agrees with the triple cohomology [8, Proposition 8.6] and governs deformations of A
in the category of P-algebras.

By a natural operation we mean a multilinear operation on H∗
P(A;A) induced

by a natural multilinear cochain operation on C∗P(A;A). Naturality means being
defined using data that do not depend on a concrete algebra A. An example is the
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Sciences of the Czech Republic, Institutional Research Plan No. AV0Z10190503.

473



classical cup product f, g 7→ f ∪ g of Hochschild cochains, resp. the induced graded
commutative associative multiplication on the Hochschild cohomology of associative
algebras [9]. Our definition excludes some operations that are also “natural” in
some sense, such as the degree zero unary operation defined as the projection πn :
H∗

P(A;A) → Hn
P (A;A), n > 0, because this operation is not induced by any natural

cochain map. A precise definition of natural operations is given in Section 7. Our

aim is to describe the homotopy type of the dg operad BP = {BP(n)}n>0 of all these
natural operations, see Problem 1 and its baby version Problem 20. The reward

would be an ultimate understanding of the structure of the cohomology of a given
type of algebras.

Our original hope was that the homotopy type of BP would be that of another

Koszul quadratic operad QP determined by P in an explicit and simple manner.
Examples we had in mind were P = Ass for which probably QP = Ger, the operad
for Gerstenhaber algebras, and P = Lie for which probably QP = Lie, the operad for
Lie algebras. Calculations presented in this note however show that the homotopy

type of BP is in general more complicated, therefore the property that makes the
homotopy type of BP for P = Ass or P = Lie so nice must be finer than just the
Koszulity of P. We have no idea what this property is.

We feel that our formulations are somehow unsatisfactory—we would certainly
prefer a concept that would not depend on a “representation” of the cohomology by

a concrete cochain complex. In an ideal world, we should be working with natural
operations in an appropriate “derived” category in which the cohomology is the hom-

functor. The possibility of such a more conceptual approach for associative algebras
and their Hochschild cohomology was indicated by [19], see also [15], [16].

Another possibility could be to consider H∗
P(A;A) as the cohomology of the cotan-

gent complex of a suitable suitably derived stack of the variety of structure constants

of P-algebras, see [3], [4], [23], and study automorphisms of the point of this stack
representing the algebra A. Our feeling is, however, that these fancier approaches,

despite their beauty and generality, are still not developed enough to give concrete
answers to concrete questions.

Let us explain the title of this note. In his famous letter [5], P. Deligne asked

whether the Gerstenhaber algebra structure on the Hochschild cohomology of an
associative algebra given by the cup product and the intrinsic bracket is induced by

a natural action of singular chains on the little discs operad. There are several proofs
of this so-called Deligne conjecture today [17], [20], [28], [29], [33], [14]. Assume one

can prove that the operad of all natural operations on the Hochschild complex (that
is, BAss in our notation) has the homotopy type of the operad for Gerstenhaber

algebras. The formality of the little discs operad [34] would then immediately imply
the Deligne conjecture by simple homological considerations.
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In fact, most of the proofs of the Deligne conjecture we are aware of [17], [20], [28],

[29], involve a conveniently chosen suboperad of BAss whose homotopy type is de-
tected by Fiedorowicz’ recognition principle for E2-operads [7]. We will discuss these
proofs in Section 6. Other proofs based on the Etingof-Kazhdan (de)quantization

were given in [33], [14]. Several attempts have also been made to find a suitable
filtration of the Fulton-MacPherson compactification of the configuration space of

points in the plane to prove the conjecture [12], [36]. The Deligne conjecture has
surprising implications for the existence of the deformation quantization of Poisson

manifolds [14], [33].

1. Formulation of the problem

In this section we state the problems sketched out in the introduction more con-

cretely and formulate also some conjectures. Let BP = (BP, δP) be the dg-operad of
all natural multilinear operations on the cochain complex C∗P(A;A) = (C∗P(A;A), dP).
The nth component BP(n) of BP is the space of all n-linear natural operations
C∗P(A;A)⊗n → C∗P(A;A) with the grading induced by the grading of C∗P(A;A):
U ∈ BP(n) has degree d if

U(f1, . . . , fn) ∈ Cm1+...+mn+d
P (A;A),

whenever fi ∈ Cmi

P (A;A) for 1 6 i 6 n. In this case we write U ∈ Bd
P(n). Each

BP(n) is equipped with the degree +1 differential δP induced by the differential dP

of C∗P(A;A) in the usual way.
A precise definition of the operad BP is given in Section 7. Here we emphasize

only that Bd
P(n) = 0 for d < 0 and that BP(0) 6= 0 for any nontrivial P. The central

problem of the paper reads:

Problem 1. Describe the homotopy type (in the non-abelian derived category)
of the dg operad BP. In particular, calculate the cohomology of BP.

A baby-version of this problem is Problem 20 of Section 3. Closely related is:

Problem 2. Find a property characterizing operads P for which BP is formal and
has the homotopy type of some Koszul quadratic operad.

We will see, in Example 15, a simple quadratic Koszul operad D such that
H∗(BD(0), δD) 6= 0. This clearly means that BD does not have the homotopy type
of a quadratic Koszul operad, therefore the property answering Problem 2 must be
stronger than Koszulness of P.

Suppose that P is the symmetrization of a non-Σ operad P [26, Remark II.1.15]. In
this case there exists a dg-suboperad BP of BP consisting of natural operations that
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preserve the order of inputs of P-cochains. For example, the classical cup product

f ∪ g ∈ C1
Ass(A;A) ∼= Lin(A⊗2, A) of Hochschild cochains f, g ∈ C0

Ass(A;A) ∼=
Lin(A,A) defined as

(f ∪ g)(a⊗ b) := f(a) · g(b) for a⊗ b ∈ A⊗A,

with · denoting the associative multiplication of A, belongs to BAss, while the oper-
ation

U(f, g)(a⊗ b) := f(b) · g(a) for a⊗ b ∈ A⊗A,

does not, see Definition 34 of Section 7 for details.

Since BP(n) is a Σn-closed subspace of BP(n), n > 0, BP is a usual, not only

a non-Σ, operad. We will see in Example 17 that, surprisingly, the homotopy type
of BP in general differs from the homotopy type of BP. We therefore formulate:

Problem 3. Let P be a non-Σ quadratic Koszul operad. Describe the homotopy
type of the dg operad BP. In particular, calculate the cohomology of BP.

In Section 6 (i) we give some indications that the operad BAss has the homotopy

type of the operad Ger for Gerstenhaber algebras, see A.4 for a definition of Ger.
One may consider also strongly homotopy versions of the above problems. Re-

call that a strongly homotopy P-algebra is, by [24], an algebra over the minimal
model shP of the operad P. Let us denote by shBP = BshP the dg-operad of natu-

ral operations on the cochain complex C∗shP(A;A) for the cohomology of a strongly
homotopy algebra A with coefficients in itself. An example of this type of operad is

the “minimal operad”M considered in [20], which is a certain suboperad of BshAss,
see Section 6 (iii).

It is clear that there exists a canonical map BshP → BP, but simple examples show

that, again rather surprisingly, this map is in general not a homotopy equivalence.
Let us formulate:

Problem 4. Describe the homotopy type of the dg-operad BshP of natural oper-
ations on the cohomology of strongly homotopy P-algebras.

Other problems formulated in this paper are Problem 16 of Section 2 and Prob-
lems 20, 21 of Section 3.

Let us finally formulate also some conjectures. Although the operads BP and

BP! are not isomorphic (see Section 7), computational evidences together with an
equivalence between the derived category of P algebras and the derived category of

P!-algebras lead us to believe in:
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Conjecture 5. The homotopy type of the operad BP is the same as the homotopy

type of BP! .

The following two conjectures concern the homotopy type of BP for P = Ass and
P = Lie.

Conjecture 6. The operad BAss has the homotopy type of the operad Ger for
Gerstenhaber algebras.

Some results which may be helpful in the proof of the above conjecture are recalled
in Section 6.

Conjecture 7. The operad BLie has the homotopy type of the operad Lie.

According to a formality theorem [24, Proposition 3.4], it is enough to prove that

H∗(BLie, δLie) ∼= Lie.

SinceH0(BLie, δLie) ∼= Lie (see Section 4), Conjecture 7 is equivalent to the acyclicity
of BLie in positive degrees. Another conjecture, Conjecture 22, is given in Section 4.

Let us finish this section with one exceptional example. The trivial operad 1
is a Koszul quadratic self-dual operad. A 1-algebra is a vector space A with no
operations. Clearly C∗1(A;A) is just the space Lin(A,A) of linear maps f : A → A

concentrated in degree zero with trivial differential, thus H∗
1(A;A) = Lin(A,A). It

is also clear that all natural operations on Lin(A,A) are the identity
�

A ∈ Lin(A,A)
considered as a degree zero constant, and iterated compositions

Lin(A,A) 3 f1, f2, . . . , fn 7→ f1 ◦ f2 ◦ . . . ◦ fn ∈ Lin(A,A), n > 1.

Therefore

B1
∼= UAss,

the operad for unital associative algebras. This example is pathological in that the
canonical element introduced in Definition 8 equals zero. Therefore, from now on all

quadratic Koszul operads in this note will be nontrivial in the sense that P 6= 1.
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2. The constants BP(0)—soul without body

This section, as well as the rest of the paper, relies on terminology and notation
recalled in the Appendix. The main result of this part is Proposition 9 which de-

scribes the dg-vector space BP(0) = (BP(0), δP) of “constants.” It is not difficult to
see (compare also Example 35 of Section 7) that

Bm−1
P (0) ∼= s(P(m)⊗ P!(m))Σm , m > 1,

with the action Bm−1
P (0) → Cm−1

P (A;A) given as the composition

s(P(m)⊗ P!(m))Σm
∼=−→ (sP(m)⊗ P!(m))Σm

sα⊗
�

−→ (sEndA(m)⊗ P!(m))Σm(1)

∼= (End↓A(m)⊗ P!(m))Σm = [Lin((↓A)⊗m, ↓A)⊗ P!(m)]Σm = Cm−1
P (A;A).

Since composition (1) is monic for all “generic” P-algebras A, (B∗P(0), δP) is
“morally” the subcomplex of natural elements in (C∗P(A;A), dP). Before going fur-
ther, we must recall the following general construction. Let T be an operad. It is
well-known that the formula

[f, g] := f ◦ g − (−1)(m−1)(n−1)g ◦ f,

where f ◦ g is, for f ∈ T(m) and g ∈ T(n), defined by

f ◦ g :=
∑

16i6m

(−1)(n−1)(i−1)f ◦i g,

makes the direct sum T∗ =
⊕

m>0

T∗, with

Tm−1 := ↑m−1T(m) = sT(m),

a graded Lie algebra. Another standard fact is that each element ω ∈ T1 = sT(2)
satisfying [ω, ω] = 0 defines a degree +1 differential δω : T∗ → T∗+1 by

δω(t) := [t, ω], for t ∈ T∗.

It is helpful to observe that the condition [ω, ω] = 0 means the associativity:

(2) ω ◦1 ω = ω ◦2 ω

and that the differential δω in terms of ◦i-operations equals

δω(t) = t ◦1 ω − t ◦2 ω + . . .− (−1)mt ◦m ω + (−1)mω ◦1 t− ω ◦2 t, for t ∈ T(m).
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As proved in [35], the graded Lie algebra structure (T∗, [−,−]) descents to the
space of coinvariants, therefore it induces, via the canonical isomorphism between
invariants and coinvariants, a Lie bracket, denoted again [−,−], on the graded vector
space TΣ

∗ =
⊕

m>0

TΣ
m with pieces

TΣ
m−1 := ↑m−1 (T(m)⊗ sgnm)Σm = sT(m)Σm .

As usual, an element φ ∈ TΣ
1 = sT(2)Σ2 satisfying [φ, φ] = 0 induces a degree +1

differential δΣφ : TΣ
∗ → TΣ

∗+1 by

(3) δΣφ t := [φ, t], for t ∈ TΣ
∗ .

In Proposition 9 below we put T := (P ⊗ P!) and define the differential (3) by
taking as φ the canonical element χ introduced in the following definition in which
# denotes the linear dual.

Definition 8. Let P be a quadratic Koszul operad. The canonical element χ is

the element of s(P⊗ P!)(2)Σ2 corresponding, under the standard identification

s(P⊗ P!)(2) ∼= ↑(P⊗ P#)(2) ∼= ↑(P(2)⊗ P(2)#) ∼= ↑Lin(P(2),P(2)),

to the suspension of the identity map ↑ � P(2) ∈ ↑Lin(P(2),P(2)).

Observe that χ is symmetric,

(4) χτ = χ for τ ∈ Σ2,

therefore indeed χ ∈ s(P ⊗ P!)(2)Σ2 . The condition [χ, χ] = 0 is equivalent to the
Jacobi identity (17) for χ which follows from [13, Corollary 2.2.9 (b)], see also the
proof of Proposition 26.

Proposition 9. There is a natural isomorphism of cochain complexes

(B∗P(0), δP) ∼= ((P⊗ P!)Σ∗ , δ
Σ
χ ).

If P is the symmetrization of a non-Σ operad P [26, Remark II.1.15], then there

is a similar description of the chain complex (B∗P(0), δP) obtained as follows. The
definition of the graded Lie algebra (T∗, [−,−]) given above clearly makes sense also
when T is a non-Σ operad. Observe also that there exists the non-Σ quadratic dual P!

of P and that one may introduce the non-Σ canonical element χ ∈ s(P ⊗ P!)(2) in
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exactly the same manner as its symmetric version. The element χ obviously satisfies

the associativity condition (2):

χ ◦1 χ = χ ◦2 χ.

Our non-Σ version of Proposition 9 reads:

Proposition 10. Let P be the symmetrization of a quadratic Koszul non-Σ op-
erad P. Then

(B∗P(0), δP) ∼= ((P⊗ P!)∗, δχ).

Let us make a comment on the meaning of the cohomology H∗(BP(0), δP). The
natural morphism

M : H∗(BP(0), δP) → H∗
P(A;A)

induced by action (1) is monic for any “generic” P-algebra A, therefore elements

H∗(BP(0), δP) represent natural generically nontrivial homology classes in the co-
homology of P-algebras. This leads one to believe that H∗(BP(0), δP) = 0 for
all well-behaved operads, since otherwise people would stumble upon nontrivial
natural classes—compare the existence of the invariant non-degenerate symmet-

ric bilinear Killing-Cartan form on any simple Lie algebra, generating a 3-cocycle
via X,Y, Z 7→ B([X,Y ], Z). Example 15 however contradicts this reasonable as-
sumption. We believe that H∗(BP(0), δP) is an important invariant of the operad P

that deserves its own name:

Definition 11. We call the graded vector space H∗(BP(0), δP) described in
Proposition 9 the soul of the cohomology of P-algebras.

It is easy to prove that H0(BP(0), δP) is always trivial.

Example 12. Let us describe the complex calculating the soul H∗(BAss(0), δAss)
of the Hochschild cohomology. Clearly

(P⊗ P!)Σm−1 = (Ass⊗Ass)Σm−1
∼= s(Ass⊗Ass)(m)Σm ∼= sAss(m),

therefore the complex ((Ass⊗Ass)Σ, δΣχ ) has the form

(5) k
δΣ

χ−→ k[Σ2]
δΣ

χ−→ k[Σ3]
δΣ

χ−→ k[Σ4]
δΣ

χ−→ . . .

It is also easy to describe the differential δΣχ ; on a permutation σ ∈ Σm it acts as

δΣχ (σ) := d0(σ)− d1(σ) + d2(σ) − . . .+ (−1)m+1dm+1(σ) ∈ k[Σm+1],
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where d0(σ) :=
� × σ, dm+1(σ) := σ × �

and di(σ) ∈ Σm+1 is the permutation

obtained by doubling the ith input of σ. In Theorem 13 below we prove that (5) is
acyclic.

Since Ass is the symmetrization of the non-Σ operad Ass, it makes sense to
consider also the subcomplex (B∗Ass(0), δAss) of (B∗Ass(0), δAss) described in Propo-
sition 10. This subcomplex is obviously isomorphic to the acyclic complex

(6) k d0−→ k d1−→ k d2−→ k d3−→ . . .

in which d2i =
�
k and d2i+1 = 0, i > 0. The inclusion (B∗Ass(0), δAss) ↪→

(B∗Ass(0), δAss) sends the generator 1 ∈ k of the nth piece of (6) into the iden-
tity permutation

�
n−1 ∈ k[Σn−1] in the complex (5).

Theorem 13. The soul H∗(BAss(0), δAss) of the Hochschild cohomology is
trivial.
���������

. We must prove that (5) is an acyclic complex. The idea will be to show

that it decomposes into a direct sum of acyclic subcomplexes indexed by simple, in
the sense introduced below, permutations.

We define first, for each σ ∈ Σn, a natural number g(σ), 0 6 g(σ) 6 n, which we
call the grade of σ, as follows. The grade of the unit

�
n ∈ Σn is n−1, g(

�
n) := n−1.

For σ 6= �
n, let

a(σ) := max{i; σ =
�

i × τ for some τ ∈ Σn−i}, and
c(σ) := max{j; σ = λ× �

j for some λ ∈ Σn−i}.

There clearly exists a unique ω = ω(σ) ∈ Σn−a(σ)−c(σ) such that σ =
�

a(σ) ×ω(σ)×�
c(σ). Let, finally, b(σ) be the number of “doubled strings” in ω(σ),

b(σ) := {1 6 s < k; ω(s+ 1) = ω(s) + 1}.

The grade of σ is then defined by

g(σ) := a(σ) + b(σ) + c(σ),

see Fig. 1 for examples. Observe that the differential δΣ
χ of (5) raises the grade by +1.

Let us call χ ∈ Σk, k > 1, simple if g(σ) = 0. Observe that, according to our
definitions,

�
n ∈ Σn is simple if and only if n = 1. For each σ ∈ Σn, σ 6= �

n, we

define a unique simple κ = κ(σ) ∈ Σk, k = n − g(σ), by contracting all “multiple
strings” of ω(σ) into “simple” ones, see Fig. 1. We put χ(

�
n) :=

�
1.
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Figure 1. Left: Examples of elements of Σ4 of grade 0 (first line), grade 1 (second line),
grade 2 (third line) and grade 3 (fourth line). Right: the corresponding simple
elements.

For a simple χ, let P ∗(χ) be the graded subspace of (5) spanned by all permuta-
tions σ with χ = κ(σ). The following statements can easily be verified:
(i) Each P ∗(χ) is a subcomplex of (5).
(ii) The complex (5) decomposes as the summation

⊕
χ
P ∗(χ) over all simple per-

mutations χ.
(iii) For each simple χ ∈ Σn,

P ∗(χ) ∼= P ∗(
�
1)⊗ . . .⊗ P ∗(

�
1) ((n+ 2)times).

The proof is finished by observing that P ∗(
�
1) is isomorphic to the acyclic com-

plex (6) and applying the Künneth formula. �

Example 14. In this example we describe the soul of the Chevalley-Eilenberg
cohomology of Lie algebras which is, due to the obvious self-duality of Proposition 9,
the same as the soul of the Harrison cohomology of commutative associative algebras.

In both cases

(P⊗ P!)Σm−1 = (Com⊗Lie)Σm−1
∼= sLie(m)Σm = ↑m−1 (Lie(m)⊗ sgnm)Σm ∼= k

(see [18]) and one may identify ((Com ⊗ Lie)Σ, δΣχ ) with the acyclic complex (6).
Therefore the souls of both the Chevalley-Eilenberg cohomology and the Harrison

cohomology are trivial.

Example 15. This example presents a Koszul quadratic operad with a nontrivial
soul. Let D := Ass∗Ass be the free product of two copies of the associative operad.
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d2

d2

d2
d1d1d1 . . .

...

Lin(A⊗4, A)

Lin(A⊗4, A)

Lin(A⊗3, A)

Lin(A⊗3, A)

Lin(A⊗2, A)

Lin(A⊗2, A)

Lin(A,A)

6

6

6

---

Figure 2. The “meager” bicomplex describing the cohomology of D-algebras.

The operad D is a Koszul quadratic operad, whose quadratic dual D! equals the
coproduct Ass ∨Ass defined by

(Ass ∨ Ass)(m) :=

{
k, if m = 1 and

Ass(m)⊕Ass(m), if m > 2.

Obviously, D-algebras are triples A = (A, µ1, µ2) consisting of two independent as-
sociative multiplications µ1, µ2 : A ⊗ A → A. The cohomology of these algebras
is the cohomology of the total complex (C∗D(A;A), dD) of the “meager” bicomplex
in Fig. 2. The horizontal line is the Hochschild cochain complex of the associative
algebra A1 := (A, µ1), the vertical line the Hochschild complex of A2 := (A, µ2).
Let e denote the identity

� ∈ Lin(A,A) considered as a natural element of
C0
D(A;A). Clearly

dD(d1e) = dD(d2e) = 0

therefore both d1e and d2e are natural cochains in C1
D(A;A) thus representing

δD-cochains in B1
D(0). The equality

dDe = d1e+ d2e

implies that d1e+ d2e is δD-homologous to zero in B1
D(0). We conclude that

H1(BD(0), δD) ∼= Span([d1e]) ∼= Span([d2e]) ∼= k.

We saw that the souls of the Hochschild (P = Ass), Chevalley-Eilenberg (P = Lie)
and Harrison (P = Com) cohomologies were trivial, while the soul of the cohomology
for D-algebras analyzed in Example 15 was not. This leads us to formulate:

483



Problem 16. Which property of a quadratic Koszul operad P implies the trivi-

ality of the soul H∗((P⊗ P!)Σ, δΣχ ) of the P-cohomology?

Example 17. In this example we describe a non-Σ quadratic Koszul operad with
the property that (B∗P(0), δP) is acyclic but the soul (B∗P(0), δP) is not. This shows
that the homotopy type of BP is in general different from the homotopy type of BP.

Let Mag be the free non-Σ operad generated by one bilinear operation, Mag :=
Γ(µ), and Mag its symmetrization. The corresponding cochain complex C∗Mag(A;A)
is the truncation

Lin(A,A) d−→ Lin(A⊗2, A)

of the Hochschild complex. The complex (B∗Mag(0), δMag) defining the soul ofMag is

the truncation

k
δΣ

χ−→ k[Σ2]

of (5), and is manifestly not acyclic. On the other hand, (B∗Mag(0), δMag) is acyclic,

isomorphic to the truncation k d0−→ k of (6). We conclude that H∗(B∗Mag(0), δMag) =
0 while

H∗(B∗Mag(0), δMag) = H1(B∗Mag(0), δMag) ∼= k.

3. Homotopy type of B(1)—surprises continue

In this section we study, as a next step toward the understanding of BP, the
homotopy type of the associative dg-algebra BP(1) = (B∗P(1), δP). Since the operad P!

is a module, in the sense of [24], over itself, it makes sense to consider the space
EndP!(P!) of all P!-module endomorphisms α : P! → P!. Very crucially,

(7) EndP!(P!) ∼= k,

because each α ∈ EndP!(P!) is uniquely determined by the value α1(1) ∈ P!(1) ∼= k
and, conversely, for each ϕ ∈ k the homomorphism α := ϕ· � P! is such that α1(1) = ϕ.

Proposition 18. There is a canonical identification of associative unital algebras

(8) H0(B∗P(1), δP) ∼= EndP!(P!) ∼= k.

���������
. Since there are no elements in negative degrees,

H0(BP(1)) = Ker(δ : B0
P(1) → B1

P(1)).
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By definition, elements of the kernel Ker(δ) are natural chain maps

{ϕm : Cm
P (A;A) → Cm

P (A;A)}m>0.

As explained in Example 36, the naturality of ϕm means that it is induced by a Σm+1-

equivariant map αm+1 : P!(m + 1) → P!(m + 1). It is easy to verify that the col-
lection {αm} determines a chain map if and only if it assembles into a P!-module

endomorphism α : P! → P!. �

The following example shows that the dg-associative algebra BP(1) might in gen-
eral have nontrivial cohomology in positive degrees.

Example 19. Let Sym be the operad describing algebras with one commutative
bilinear multiplication and no axioms. Explicitly, Sym is the free operad generated
by the trivial representation of Σ2 placed in arity two. It is a Koszul quadratic
operad whose quadratic dual Sym! is given by Sym!(1) = k, Sym!(2) = sgn2 (the

signum representation of Σ2), and Sym!(m) = 0 for m > 3.
The cohomology of a Sym-algebra A = (A, · ) is the cohomology of the two-term

complex (which should be interpreted as a truncation of the Harrison complex)

Lin(A,A) d−→ Lin(S2A,A),

where S2A is the second symmetric power of A. The differential d is given by the

usual formula
(dφ)(a, b) := a · φ(b)− φ(a · b) + φ(b) · a,

for φ ∈ Lin(A,A) and a, b ∈ A.
We are going to describe the dg-algebra B∗Sym(1). Let α be the projection of

Lin(A,A) ⊕ Lin(S2A,A) onto Lin(A,A) and β the projection onto Lin(S2A,A).
Let u and v be degree +1 operations given by

u(φ)(a, b) := a · φ(b) + φ(a) · b and v(φ)(a, b) := φ(a · b),

for φ ∈ Lin(A,A) and a, b ∈ A. Then clearly B0
Sym(1) is the semisimple algebra

k⊕k spanned by α and β, and the space B1
Sym(1) is two-dimensional, spanned by u

and v. The higher Bi
Sym(1) are, for i > 2, trivial. To describe the multiplication in

B∗Sym(1), it is enough to specify how B0
Sym(1) acts on B1

Sym(1). This action is given
by

αb = 0 = bβ and bα = b = βb, for b ∈ B1
Sym(1).

The differential δSym of B∗Sym(1) acts by

δα = −δβ = u− v, δu = δv = 0.
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The cohomology of (B∗Sym(1), δSym) can be easily calculated,

H∗(B∗Sym(1)) ∼= k⊕W,

where W is the vector space spanned by the class [u]. We leave as a simple exercise
to prove that there exists a quasi-isomorphism H∗(B∗Sym(1)) → B∗Sym(1). The dg-
associative algebra BSym(1) is therefore formal.

Here is a baby version of Problem 1:

Problem 20. Describe the homotopy type of the unital differential graded as-
sociative algebra BP(1) = (B∗P(1), δP). In particular, calculate the cohomology of
BP(1).

We expect that the homotopy type of BP(1) is that of k for all “reasonable”
operads, though we do not know what “reasonable” means—the operad Sym of
Example 19 seems reasonable enough, yet the homotopy type of BSym(1) is nontrivial.
Let us close this section by formulating:

Problem 21. Which property of the operad P implies that the dg associative
algebra (B∗P(1), δP) has the homotopy type of k?

4. The operad H0(BP) and the intrinsic bracket

It is well-known [25], [31] that the chain complex C∗P(A;A) always carries a natural
dg Lie algebra structure given by the intrinsic bracket. The easiest way to construct

such a bracket is to identify C∗P(A;A) with the dg Lie algebra Coder∗(Fc
P!(↓A)) of

coderivations of the cofree nilpotent P!-coalgebra cogenerated by the desuspen-

sion ↓A as it was done in [26, Definition II.3.99]. In this way we obtain a natural
homomorphism

(9) I : (Lie, 0) → (BP, δP)

of dg operads. If P is the symmetrization of a non-Σ operad P, then Im(I) ⊂
BP, therefore the map I of (9) factorizes through the natural inclusion (BP, δP) ↪→
(BP, δP). Computational evidences lead us to:
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Conjecture 22. The natural homomorphism I : (Lie, 0) → (BP, δP) induces an
isomorphism of operads

H0(BP) ∼= Lie,

for an arbitrary nontrivial quadratic Koszul P.

We were able to verify Conjecture 22 for P = Lie, that is, to prove

(10) H0(BLie) ∼= Lie.

This isomorphism turned out to be related to a certain characterization of free Lie
algebras inside free pre-Lie algebras. More precisely, let pre 	 (X) denote the free
pre-Lie algebra generated by a set X . The commutator of the pre-Lie product makes
pre 	 (X) a Lie algebra. Let 	 (X) ⊂ pre 	 (X) be the Lie algebra generated by X
in pre 	 (X). It is not hard to see that 	 (X) is in fact isomorphic to the free Lie
algebra on X , see also [6]. Then (10) is implied by a very explicit characterization

of the subspace 	 (X) of pre 	 (X).
Similarly, the conjectured isomorphism H0(BAss) ∼= Lie can be translated into

a certain characterization of free Lie algebras inside free brace algebras. We were

also able to prove that, for an arbitrary quadratic Koszul operad,

(11) H0(BP(2)) ∼= sgn2,

the signum representation of Σ2, by describingH0(BP(2)) in terms of suitably defined
pairings P! ⊗ P! → P!.

Let us close this section by a couple of remarks which will be useful in the proof of

Proposition 26. As we recalled at the beginning of this section, there is a canonical
isomorphism C∗P(A;A) ∼= Coder∗(Fc

P!(↓A)). It is well-known that coderivations of
a cofree nilpotent algebra form a natural pre-Lie algebra [26, II.3.9], therefore one
has a natural homomorphism of non-dg operads

(12) preI : preLie→ BP.

The map (9) is then the composition

Lie −→ preLie preI−→ BP

of preI with the anti-symmetrization map Lie→ preLie.
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5. The cup products

The central statement of this section is Theorem 23 that claims that the suspension
s(P ⊗ P!) (see A.3) of the operad (P ⊗ P!) acts on C∗P(A;A), and Theorem 24 that
characterizes which elements of s(P ⊗ P!) act via chain maps. Observe that the
operad s(P⊗ P!) need not be quadratic even when P is.

Theorem 23. There is a canonical action of the operad s(P⊗P!) on the graded
vector space C∗P(A;A), via natural operations. This action can be interpreted as an
inclusion of non-differential graded operads

(13) cup : s(P⊗ P!) ↪→ BP.

���������
. The proof relies on the notation introduced/recalled in A.6 and A.5.

The “tautological” action of the endomorphism operad EndA on A tensored with the
action of P! on itself makes the graded vector space C̃∗P(A;A) =

⊕
m>0

C̃m
P (A;A) an

s(EndA ⊗ P!)-algebra. It is straightforward to prove that this action induces, via

(14) t(f1, . . . , fn) := Aver
(
t(ι(f1), . . . , ι(fn))

)
,

for t ∈ s(EndA ⊗P!)(n) and f1, . . . , fn ∈ C∗P(A;A), an action of s(EndA⊗P!) on the
graded vector space C∗P(A;A). Suppose that A is a P-algebra, with the structure
given by α : P → EndA. The action (13) is obtained by composing the action (14)

with the homomorphism s(α ⊗ �
) : s(P ⊗ P!) → s(EndA ⊗ P!). An alternative

description of (13) is given in Example 38 of Section 7. �

We use the inclusion (13) to view s(P ⊗ P!) as a suboperad of BP. Elements of
s(P ⊗ P!) need not be δP-closed in BP; let ZP ⊂ s(P ⊗ P!) denote the suboperad
of δP-cocycles. In Theorem 24, which describes ZP explicitly, we use the canonical
element χ introduced in Definition 8.

Theorem 24. The suboperad ZP of δP-closed elements in s(P ⊗ P!) is charac-
terized as follows: t ∈ s(P⊗ P!)(n) belongs to ZP(n) if and only if

(15) χ ◦2 t+ t ◦1 χ+ (t ◦2 χ)(12) + (t ◦3 χ)(123) + . . .+ (t ◦n χ)(123 . . . n) = 0,

where (123 . . . k) ∈ Σn+1 is the cycle

(
1 2 3 . . . k k + 1 . . . n+ 1
2 3 4 . . . 1 k + 1 . . . n+ 1

)
.
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Figure 3. Equation (15) for n = 3.

The proof is a completely straightforward calculation. We recommend as an ex-

ercise to verify that solutions of (15) are indeed closed under operadic composition.
The meaning of the equation (15) should be clear from Fig. 3. The importance of

the operad ZP is explained by

Corollary 25. The map cup of (13) induces a canonical map (denoted again cup)

(16) cup : ZP → H∗(BP, δP),

therefore H∗
P(A;A) is a natural ZP-algebra.

From reasons which become clear later we call operations induced by elements

of ZP the cup products. The following proposition in which Lie is the operad for Lie
algebras (see A.2) shows that the operad ZP is always nontrivial (provided P 6= 1)
while the map (16) is never monic.

Proposition 26. The operad ZP contains the canonical element χ. There exists

a unique map L : sLie→ ZP that sends the generator sλ ∈ sLie(2) into χ ∈ ZP(2).
All elements in the image of this map are δP-cohomologous to zero in BP.
���������

. Recall [13, Corollary 2.2.9 (b)] that, for each quadratic operad P, there
exits a morphism of operads Lie→ P⊗ P! that takes the generator λ ∈ Lie(2) into
the identity operator in P(2)⊗ P(2)# ∼= P(2) ⊗ P!(2). Let L : sLie→ s(P⊗ P!) be
the suspension of this morphism. Let us prove, using Theorem 24, that χ ∈ ZP(2).
Equation (15) for t = χ reads

χ ◦2 χ+ χ ◦1 χ+ (χ ◦2 χ)(12) = 0,

which can be written, due to the symmetry (4) of χ, as the Jacobi identity for

a degree 1 “multiplication” χ:

(17) χ ◦1 χ+ (χ ◦1 χ)(123) + (χ ◦1 χ)(132) = 0,

or, pictorially,

+ + = 0.

3 1 21 2 32 3 1

χχχ
χχχ
•••

• • •
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But (17) is satisfied, because χ = L(sλ) by definition, and sλ ∈ sLie(2) satisfies
the same condition in sLie. The inclusion Im(L) ⊂ ZP follows from the fact that
Im(L) is generated by χ and that ZP is a suboperad of s(P⊗ P!).
Let us prove that all elements in the image of L are δP-cohomologous to zero. Let

` ∈ preLie(2) be the generator of the quadratic operad preLie for pre-Lie algebras
and let ◦ := preI(`) ∈ B0

P(2), where preI : preLie → BP is the map considered
in (12) at the end of Section 4. It is easy to verify that then χ = δP(◦). This finishes
the proof of Proposition 26, because Im(L) is generated by χ. �

Suppose that P is the symmetrization of a non-Σ operad P. Given t ∈ s(P⊗P!)(n)
as in Theorem 24, cup(t) ∈ BP(n) if and only if t belongs to the Σn-closure of

s(P⊗P!)(n) in s(P⊗P!)(n), that is, if t = tσ for some t ∈ s(P⊗P!)(n) and σ ∈ Σn.
In the following non-Σ version of Theorem 24, χ ∈ s(P⊗P!)(2) is the non-Σ canonical
element introduced in Section 2.

Theorem 27. An element t ∈ s(P⊗ P!)(n) ⊂ s(P⊗ P!)(n) belongs to ZP(n) if
and only if

(18) χ ◦2 t = t ◦1 χ = t ◦2 χ = . . . = t ◦n χ = χ ◦1 t,

see Fig. 4.

•
χ

t

t

χ•
====

χχ

tt

••

•
χ

t

Figure 4. Equation (18) for n = 3.

The proof of Theorem 27 is a straightforward verification. The proof of the fol-

lowing proposition is similar to that of Proposition 26.

Proposition 28. Let P be the symmetrization of a non-Σ operad P. Then

χ ∈ ZP and there exists a unique map A : sAss→ ZP defined by A(sµ) := χ, where

sµ ∈ sAss(2) is the suspension of the generator µ (see A.2). Moreover, the diagram

sLie

��

L // ZP

sAss
A

77pppppppppppp
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where L is as in Proposition 26, with the vertical map given by the anti-commutator

of the associative product, commutes.

Example 29 (Hochschild cohomology). Let P = Ass be the operad for associative
algebras. Then s(P⊗ P!) = s(Ass⊗Ass) and a simple calculation reveals that the
map A of Proposition 28 is the suspended diagonal s∆: sAss→ s(Ass⊗Ass) and
that ZAss = Im(A). Therefore

ZAss
∼= sAss.

The generator sµ ∈ sAss(2) is mapped to the “classical” cup product f, g 7→ f ∪ g
of Hochschild cochains [9], and the generator sλ ∈ sLie(2) to the anti-commutator
of this cup product:

f, g 7→ f ∪ g + (−1)|f ||g|g ∪ f
which is cohomologous to zero, because the cup product of Hochschild cochains is

homotopy commutative [9, Theorem 3].

Example 30 (Chevalley-Eilenberg cohomology). If P = Lie is the operad for Lie
algebras, then s(P⊗ P!) = s(Lie⊗ Com) ∼= sLie and we see immediately that

(19) ZLie
∼= sLie = Im(L).

The generator sλ ∈ Lie(2) is mapped to the product f, g 7→ {f, g}, which is coho-
mologous to zero, see [22, Exercise 7].

Example 31 (Harrison cohomology). Here P = Com is the operad for commu-
tative associative algebras and s(P ⊗ P!) = s(Com ⊗ Lie) ∼= sLie, therefore, as in
Example 30,

(20) ZCom
∼= sLie = Im(L).

Equations (19) and (20) illustrate the obvious self-duality of the space of cup prod-

ucts:
ZP! ∼= ZP,

compare Conjecture 5.

Example 32. If D = Ass ∗ Ass is as in Example 15, then

ZD = sAss ∨ sAss.

Let us describe products corresponding to the generators of the 4-dimensional vector
space

(sAss ∨ sAss)(2) = sAss(2)⊕ sAss(2) ∼= ↑ k[Σ2]⊕ ↑ k[Σ2].
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Recall that C∗D(A;A) is the total complex of the meager bicomplex in Fig. 2. Let
∪1 (resp. ∪2) be the cup product in the horizontal (resp. vertical) subcomplex in
Fig. 2. Let π1 (resp. π2) be the projection of C∗D(A;A) onto the horizontal (vertical)
subcomplex. Likewise, let ι1 (resp. ι2) be the inclusion. Although neither πi, ιi nor

∪i are chain maps (i = 1, 2), the compositions

f ∪1 g := ι1(π1f ∪1 π1g) and f ∪2 g := ι2(π2f ∪2 π2g)

are chain operations. The generators of sAss(2) ⊕ sAss(2) then correspond to the
four operations

f, g 7→ f ∪1 g, f, g 7→ f ∪2 g, f, g 7→ g ∪1 f and f, g 7→ g ∪2 f.

The combination

(f ∪1 g + f ∪2 g) + (−1)|f ||g|(g ∪1 f + g ∪2 f)

is cohomologous to zero and the image T (ZD(2)) of ZD in H1(BD(2)) is easily seen
to be 3-dimensional.

6. Operad BAss and the Deligne conjecture

In this section we recall some results related to BAss and the Deligne conjecture.
Let us make a necessary comment about our degree convention. We use the grading

such that the intrinsic bracket of Section 4 has degree 0 in B∗P(2), while the n-fold
cup products of Section 5 are of degree n − 1 in B∗P(n). In the literature related to
the Deligne conjecture, the convention under which the intrinsic bracket has degree 1
and the n-fold cup products are of degree 0 is often used. These two conventions are
tied by the following regrading operator:

Reg(B∗P(n)) := Bn−1−∗
P (n).

In what follows we identify operads that differ only by the above regrading. In

particular, the operad Ger for Gerstenhaber algebras becomes identified with the
operad Braid for braid algebras (also called 1-algebras), see A.4.
Let us recall that a topological operad A is an E2-operad if it has the homotopy

type of the little discs operad D2 [27]. According to the Formality Theorem [34], the

operad S∗(A) of singular chains on such an operad has the homotopy type of the
operad Braid for braid algebras.
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(i) D. Tamarkin and B. Tsygan studied in [32, Section 3] a certain operad F =
{F (n)}n>1 of natural operations on the cosimplicial Hochschild complex C•(X,X)
of a topological unital monoid X . The nth space of this cosimplicial set is the space
Cont(X×n, X) of continuous maps from the nth Cartesian power of X to X . For
each n > 1, F (n) is a functor (∆op)n×∆ → Sets. They then considered a topological
operad E = {E(n)}n>1 whose pieces are the topological realizations of these functors

and claimed that E is an E2-operad.

It is not difficult to see that the operad CN∗(F ) of normalized chains of F coincides
with the operad {BAss(n)}n>1 (our BAss without constants). Since (B∗Ass(0), δAss)
is acyclic (see Example 12), we could conclude that BAss has the homotopy type
of Ger, but we must bear in mind that the arguments in [32] were merely sketched.
(ii) J. E. McClure and J.H. Smith considered in [29] a dg-suboperad S2 of their

“sequence” operad S and proved that S2 naturally acts on the Hochschild cochain

complex of an associative algebra. In our terminology this means that they con-
structed a canonical map S2 → BAss. They then verified the Deligne conjecture by

showing, using a result of [1], that S2 has the homotopy type of the singular chain
complex S∗(D2) of the little discs operad. Their proof is a very reliable one.

(iii) M. Kontsevich and Y. Soibelman [20] introduced a “minimal operad”M nat-
urally acting on the Hochschild cochain complex of an A∞-algebra. In our terminol-

ogy,M was a suboperad of BshAss generated by braces and cup products. They then
argued that M has the homotopy type of the operad of suitably defined piecewise

algebraic chains on the operad FM2 of the Fulton-MacPherson compactification of
the configuration space of points in 
 2 . Since FM2 is, by [30, Proposition 3.9], an

E2-operad, they concluded that M has the homotopy type of Ger.
(iv) R.M. Kaufmann realized in [17] that the cellular chains CC∗(Cact1) on his

operad-up-to-homotopy Cact1 of spineless normalized cacti is an honest operad which
naturally acts on the Hochschild cochain complex, via braces and cup products. By

comparing Cact1 to the operad Cact of spineless (non-normalized) cacti, he concluded
that CC∗(Cact1) is a model for chains on the little discs operad D2.

All the proofs of the Deligne conjecture mentioned above use some special fea-

tures of associative algebras and E2-operads, such as the cosimplicial structure of
the Hochschild cochain complex, Fiedorowicz’ detection principle, or a relation to

the Fulton-MacPherson and cacti operads. None of these features are available for
a general operad P; we therefore think that the analysis of the homotopy type of BP

for a general Koszul quadratic P is substantially more difficult than the analysis
of BAss.

Let us mention that there are other approaches to the Deligne conjecture, as
D. Tamarkin’s proofs that use the Etingof-Kazhdan quantization [14], [33], or those
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based on a suitable filtration of the Fulton-MacPherson compactification FM2, see

E. Getzler and J.D. S. Jones [12] or A.A. Voronov [36].

7. Natural operations

Let us recall the following definitions which can be found for example in [26,

Section II.1.5]. By a tree we mean a connected graph T without loops. A valence
of a vertex v of T is the number of edges adjacent to v. A leg or leaf of T is an

edge adjacent to a vertex of valence one, other edges of T are interior. We in fact
discard vertices of valence one at the endpoints of the legs, therefore the legs become

“half-edges” having only one vertex. By a rooted or directed tree we mean a tree with
a distinguished output leg called the root. The remaining legs are called the input

legs of the tree. A tree with a input legs labelled by elements of the set {1, 2, . . . , a} is
called an a-tree. A rooted tree is automatically oriented, each edge pointing towards

the root. The edges pointing towards a given vertex v are called the input edges of v,
the number of these input edges is then the arity of v denoted ar(v). Vertices of arity
one are called unary, vertices of arity two binary, vertices of arity three ternary, etc.

Notation. Let n, m and m1, . . . ,mn be non-negative integers. In the rest of this
section, i will always denote an integer between 0 and n, a := m+1 and ai := mi +1.
We will also assume the notation introduced in A.6.

An n-linear natural operation

U : Cm1
P (A;A)⊗ . . .⊗ Cmn

P (A;A) → Cm
P (A;A)

is given by the following data.

(i) A rooted a-tree T with n white vertices w1, . . . , wn of arities a1, . . . , an, and k
at least binary black vertices, k > 0.

(ii) A linear order on the set of input edges of each white vertex of T .
(iii) A decoration of black vertices of T by elements of P.

(iv) A linear map Φ: sP!(a1)⊗ . . .⊗ sP!(an) → sP!(a).
Given the above data and fi ∈ Cmi

P (A;A), the value U(f1, . . . , fn) ∈ Cm
P (A;A) is

defined as follows. Let us decompose

fi =
∑

κi

φκi

i ⊗ qi
κi
∈ [Lin(A⊗ai , A)⊗ sP!(ai)]Σai ∼= Cmi

P (A;A),

where φκi

i ∈ Lin(A⊗ai , A), qi
κi
∈ sP!(ai) and κi is a summation index. Since the

inputs of white vertices are linearly ordered, each φκi

i determines a decoration of
the white vertex wi by an element of Lin(A⊗ai , A) = EndA(ai). Recall that A is
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a P-algebra with the structure homomorphism α : P → EndA. Applying α to the dec-

orations of the black vertices we decorate also black vertices with elements of EndA.
So T is now a tree with all vertices decorated by EndA. The composition in the
operad EndV along T [13] determines, for each k1, . . . , kn, the element

T (φκ1
1 , . . . , φκn

n ) ∈ Lin(A⊗a, A).

Let

Ũ(f1, . . . , fn) :=
∑

κ1,...,κn

T (φκ1
1 , . . . , φκn

n )⊗ Φ(q1κ1
, . . . , qn

κn
) ∈ Lin(A⊗a, A)⊗ sP!(a)

∼= C̃m
P (A;A).

Finally, let U(f1, . . . , fn) := Aver(Ũ(f1, . . . , fn)) ∈ Cm
P (A;A). It follows from an

elementary combinatorics of trees that

deg(U) = ar(b1) + . . .+ ar(bk)− k,

therefore deg(U) is always non-negative and deg(U) = 0 if and only if T has no black
vertex.

Definition 33. Let BP := {BP(n)}n>0 be the operad spanned by all natural

operations U = U(T,Φ) in the above sense. Since the differential dP of C∗P(A;A) is
itself a natural operation living in B1

P(1), it induces a differential δP on BP by the

standard formula

δP(U)(f1, . . . , fn) := dPU(f1, . . . , fn)

− (−1)|U |
∑

16i6n

(−1)|f1|+...+|fi−1|U(f1, . . . , dPfi, . . . , fn),

making BP = (B∗P, δP) a dg-operad.

Heuristically, the value U(T,Φ)(f1, . . . , fn) is given by inserting fi at the vertex wi

of T , 1 6 i 6 n, and then performing the composition along Φ. The operadic
composition of BP is the vertex insertion similar to that of [2] and the symmetric

group permutes the labels of white vertices. In the following definition we introduce
a non-Σ version of BP.

Definition 34. Suppose P is the symmetrization of a non-Σ operad P. Let BP

be the dg-suboperad of BP spanned by natural operations U(T,Φ) as in Definition 33
such that the tree T is planar, with black vertices decorated by elements of P, and

the map Φ such that

Φ(sP!(a1)⊗ . . .⊗ sP!(an)) ⊂ sP!(a).
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Example 35 (Constants). Let us see what happens if T is the a-corolla with
one black vertex decorated by p ∈ P(a) and no white vertices as in Fig. 5. The
map Φ: k → sP!(a) is given by specifying an element ϕ := Φ(1) ∈ sP!(a) and
Ũ determined by this Φ equals α(p)⊗ ϕ ∈ C̃m

P (A;A). Since α is equivariant,

Aver(α(p)⊗ ϕ) = (α⊗ �
)(Aver(p⊗ ϕ))

therefore U := Aver(α(p) ⊗ ϕ) ∈ Cm
P (A;A) is parametrized by an element in the

image of the averaging map

Aver : P(a)⊗ sP!(a) → (P(a)⊗ sP!(a))Σa ,

in other words,

Bm
P (0) ∼= s(P⊗ P!)(a)Σa , m > 0.

It is equally easy to see that, for a quadratic Koszul non-Σ operad P,

Bm
P (0) ∼= s(P⊗ P!)(a), m > 0.

1 2 a
. . .

p
•

@
@@







�
��

w1

σ(1) σ(2) σ(a)
. . .

◦

@
@@

�
��

�
��

Figure 5. The tree defining a constant in Bm
P (0) (left) and a unary operation in B0P(1)

(right), where m = a+ 1 as always.

Example 36 (Unary operations of degree 0). Now T is an a-corolla with one
white planar vertex and no black vertices, with input legs labelled σ(1), . . . , σ(a),
σ ∈ Σa, as shown in Fig. 5, and Φ: sP!(a) → sP!(a) is a linear map. If

f =
∑

κ

φκ ⊗ qκ ∈ [Lin(A⊗a, A)⊗ sP!(a)]Σa ∼= Cm
P (A;A),

then U(f) = Aver(
∑
κ
φκσ−1 ⊗ Φ(qκ)). Since f =

∑
φκ ⊗ qκ is Σa-stable,

U(f) =
∑

φκ ⊗Aver(Φκ)(qκ).

Therefore U(f) is given by a Σa-equivariant map Ψ :=↓a−1 Aver(Φ): P!(a) → P!(a),
thus

(21) B0
P(1) ∼= LinΣ(P!,P!),
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the space of all collections {ψn : P!(n) → P!(n)}n>0 of equivariant maps. We leave

as an exercise to verify that, for a non-Σ quadratic Koszul operad P,

B0
P(1) ∼= Lin(P!,P!).

Example 37 (Projections). Let pm ∈ B0
P(1) be given, in identification (21), by

Ψ ∈ LinΣ(P!,P!) defined as

Ψ|P!(a) =

{ �
P!(a), for a = m+ 1 and

0, otherwise.

Clearly, pm is the projection C∗P(A;A) →→ Cm
P (A;A). The system of all these projec-

tions makes BP an � >0-colored operad, where � >0 is the set of non-negative integers.

Since these projections do not commute with dP (that is δP(pm) 6= 0 for a generic P),
(BP, δP) is not a dg � >0-colored operad.

Example 38 (Cup products). In this example we explain how an element

t = p⊗ sq ∈ P(n)⊗ sP!(n) ∼= s(P⊗ P!)(n)

determines a natural operation in Bn−1
P (n). Let T be as in Fig. 6, with the black

vertex decorated by p ∈ P(n), and let the linear map Φ: sP!(a1)⊗ . . .⊗ sP!(an) →
sP!(a) be given by the operadic composition in sP!:

Φ(sq1, . . . , sqn) := sq(sq1, . . . , sqn), qi ∈ P!(ai), 1 6 i 6 n.

It is more or less clear that the natural operation U(T,Φ) determined by the above
data agrees with the cup product cup(t) of Theorem 23. We recommend as another
exercise to verify that also the intrinsic bracket described in (9) is given by natural
operations in the sense of this section.

︸ ︷︷ ︸
an

︸ ︷︷ ︸
a2

︸ ︷︷ ︸
a1

. . .

.........

p

◦◦◦w1 w2 wn

•

@@����@@���� @@����

bbbbbbb

%
%

%
%

"""""""

Figure 6. The tree defining the cup product.

Example 39. Let us describe all natural operations C1
P(A;A) ⊗ C1

P(A;A) →
C2

P(A;A) for some particular choices of P.
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(i) Hochschild cohomology. For P = Ass, C1
P(A;A) = Lin(A⊗2, A), C2

P(A;A) =
Lin(A⊗3, A), and the only natural operations C1

P(A;A)⊗C1
P(A;A) → C2

P(A;A) are
linear combinations of

f, g → (f ◦1 g)σ, f, g → (f ◦2 g)σ, f, g → (g ◦1 f)σ, f, g → (g ◦2 f)σ, σ ∈ Σ3,

where ◦1, ◦2 are Gerstenhaber-type products [9] given by

(22) (u ◦1 v)(a, b, c) := u(v(a, b), c)), (u ◦2 v)(a, b, c) := u(a, v(b, c)),

for u, v ∈ C1
P(A;A), a, b, c ∈ A, and σ ∈ Σ3 permutes the factors of A⊗3 in the usual

way. Operations belonging to B0
Ass(2) are linear combinations of the operations (22)

with σ =
�
3, the unit of Σ3.

(ii) Chevalley-Eilenberg cohomology. If P = Lie, then C1
P(A;A) = Lin(∧2A,A),

C2
P(A;A) = Lin(∧3A,A), where ∧nA denotes the nth exterior power. The only
natural operations C1

P(A;A) ⊗ C1
P(A;A) → C2

P(A;A) are linear combinations of

f, g → f ◦ g and f, g → g ◦ f,

where

(u ◦ v)(a, b, c) := u(v(a, b), c) + u(v(b, c), a) + u(v(c, a), b)

for u, v ∈ C2
P(A;A) and a, b, c ∈ A.

(iii) Harrison cohomology. If P = Com, then

C1
P(A;A) = {u ∈ Lin(A⊗2, A); u(a, b)− u(b, a) = 0}

and C2
P(A;A) consists of all w ∈ Lin(A⊗3, A) such that

w(a, b, c)− w(b, a, c) + w(b, c, a) = w(a, b, c)− w(a, c, b) + w(c, a, b) = 0,

for a, b, c ∈ A. Natural operations C1
P(A;A) ⊗ C1

P(A;A) → C2
P(A;A) are linear

combinations of

f, g → f ◦ g and f, g → g ◦ f,

where

u ◦ v := u(v(a, b), c)− u(v(b, c), a),

for u, v ∈ C2
P(A;A) and a, b, c ∈ A.
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Appendix: Notations, conventions and background material

A.1. In this note, an operad means an operad in the category of differential graded
(dg) vector spaces, that is, a sequence P = {P(n)}n>0 of right Σn-modules with

structure operations

γ : P(n)⊗ P(k1)⊗ . . .⊗ P(kn) → P(k1 + . . .+ kn),

for n > 1 and k1, . . . , kn > 0, and a unit map η : k → P(1) that satisfy the usual
axioms [27], [21]. Instead of γ(p⊗ p1 ⊗ . . .⊗ pn) we will often write γ(p, p1, . . . , pn)
or p(p1, . . . , pn). Recall [24] that operads can be equivalently defined using the ◦i-

operations

◦i : P(m)⊗ P(n) → P(m+ n− 1)

defined, for m,n > 0, 1 6 i 6 m, by

p ◦i q := γ(p⊗ e⊗(i−1) ⊗ q ⊗ e⊗m−i),

where e := η(1).
If we remove from the above definition all references to the symmetric group

actions, we get a definition of a non-Σ operad. Each non-Σ operad P generates
a unique (usual) operad P such that P(n) ∼= P(n)⊗ k[Σn], n > 0.

A.2. For each set of operations E, there exists the free operad Γ(E) generated
by E [26, Proposition II.1.92]. Let µ denote a bilinear operation placed in degree 0.
The operad Ass for associative algebras is the quotient

Ass := Γ(µ)/(µ ◦1 µ− µ ◦2 µ),

where (µ ◦1 µ − µ ◦2 µ) denotes the operadic ideal generated by the associativity
axiom for µ.

If λ is a skew-symmetric bilinear operation, then the operad for Lie algebras is the

quotient

Lie := Γ(λ)/(Jacobi(λ)),

where

Jacobi(λ) :=
∑

σ∈C3

(λ ◦1 λ)σ

with the summation taken over the order 3 cyclic subgroup C3 of Σ3, denotes the
Jacobi identity for λ.
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Finally, for an arbitrary differential graded vector space V , there is the endo-

morphism operad EndV = {Lin(V ⊗n, V )}n>0, with structure operations given as
the usual composition of multilinear maps. A P-algebra is then a homomorphism
α : P → EndV . We sometimes call α also an action of P on V .

A.3. The suspension sA = {sA(n)}n>0 of a Σ-module A = {A(n)}n>0 is defined

by
sA(n) := ↑n−1A(n)⊗ sgnn,

where sgnn denotes the signum representation of Σn, see [26, Definition II.3.15]. If
P is an operad, then the collection sP carries a canonical induced operad structure
and the operad sP is called the operadic suspension of P. For any two operads P

and Q,
s(P⊗ Q) ∼= sP⊗ Q ∼= P⊗ sQ.

A.4. An (m,n)-algebra is [8, Example 9.4] a graded vector space A together with
two bilinear maps, − ∪ − : A ⊗ A → A of degree m, and [−,−] : A ⊗ A → A of
degree n (m and n are natural numbers), such that, for any homogeneous a, b, c ∈ A,
(i) a ∪ b = (−1)|a|·|b|+m · b ∪ a,
(ii) [a, b] = −(−1)|a|·|b|+n · [b, a],
(iii) − ∪− is associative in the sense that

a ∪ (b ∪ c) = (−1)m·(|a|+1) · (a ∪ b) ∪ c,

(iv) [−,−] satisfies the following form of the Jacobi identity:

(−1)|a|·(|c|+n) · [a, [b, c]] + (−1)|b|·(|a|+n) · [b, [c, a]] + (−1)|c|·(|b|+n) · [c, [a, b]] = 0,

(v) the operations − ∪ − and [−,−] are compatible in the sense that

(−1)m·|a|[a, b ∪ c] = [a, b] ∪ c+ (−1)(|b|·|c|+m)[a, c] ∪ b.

(0, 1)-algebras were considered in [12] under the name 2-algebras or braid algebras.
The corresponding operad Braid is isomorphic to the homology of the little discs
operad D2, Braid ∼= H∗(D2). Following [11, Section 10], we call (1, 0)-algebras Ger-
stenhaber algebras, though the terminology is not unique, compare for instance [10,

Subsection 10.2] where a Gerstenhaber algebra means a (0,−1)-algebra.

A.5. Let M be a right module over a finite group G. We denote, as usual

MG := {m ∈M ; mg = g for all g ∈ G} and MG :=
M

(m−mg; m ∈M, g ∈ G)
.
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Let Aver : M →MG be the “averaging” map given by

Aver(m) :=
1
|G|

∑

g∈G

mg.

It is a standard fact that the composition πι of the projection π : M →→ MG with

the inclusion ι : MG ↪→M is the identity and that Aver is a right inverse to ι.

A.6. Let us recall the operadic cochain complex and introduce some useful no-
tations. As a graded vector space, the operadic cochain complex is defined by [26,
Definition II.3.99]:

(23) Cn−1
P (A;A) = [Lin((↓A)⊗n, ↓A)⊗ P!(n)]Σn , n > 1,

where ↓ A denotes the desuspension of the graded vector space A. It will be conve-
nient to denote

C̃n−1
P (A;A) := Lin((↓A)⊗n, ↓A)⊗ P!(n),

so that Cn−1
P (A;A) ∼= C̃n−1

P (A;A)Σn . The averaging over the Σn-action defines an
epimorphism

Aver : C̃n−1
P (A;A) →→ Cn−1

P (A;A)

of graded modules which is a left inverse to the inclusion

ι : Cn−1
P (A;A) ↪→ C̃n−1

P (A;A).

We will often use the following canonical isomorphisms of graded Σn-modules:

C̃n−1
P (A;A) = Lin((↓A)⊗n, ↓A)⊗ P!(n) ∼= ↑⊗n−1 (Lin(A⊗n, A)⊗ P!(n)⊗ sgnn)

∼= s(Lin(A⊗n, A)⊗ P!(n)) ∼= sEndA(n)⊗ P!(n)
∼= EndA(n)⊗ sP!(n) ∼= End↓A(n)⊗ P!(n).
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