[3] R. W. Hansell:
On characterizing non-separable analytic and extended Borel sets as types of continuous images. Proc. London Math. Soc. 28 (1974), 683–699.
MR 0362269 |
Zbl 0313.54044
[4] R. W. Hansell:
Descriptive sets and the topology of nonseparable Banach spaces. Serdica Math. J. 27 (2001), 1–66.
MR 1828793 |
Zbl 0982.46012
[5] R. W. Hansell:
Descriptive topology. Recent Progress in General Topology, M. Hušek and J. van Mill (eds.), North-Holland, Amsterdam, London, New York, Tokyo, 1992, pp. 275–315.
MR 1229129 |
Zbl 0805.54036
[6] P. Holický:
Čech analytic and almost $K$-descriptive spaces. Czech. Math. J. 43 (1993), 451–466.
MR 1249614
[7] P. Holický:
Luzin theorems for scattered-$K$-analytic spaces and Borel measures on them. Atti Sem. Mat. Fis. Univ. Modena XLIV (1996), 395–413.
MR 1428772
[9] P. Holický and V. Komínek:
On projections of nonseparable Souslin and Borel sets along separable spaces. Acta Univ. Carolin. Math. Phys. 42 (2001), 33–41.
MR 1900390
[10] P. Holický and J. Pelant:
Internal descriptions of absolute Borel classes. Topology Appl. 141 (2004), 87–104.
MR 2058682
[11] P. Holický and M. Zelený:
A converse of the Arsenin-Kunugui theorem on Borel sets with $\sigma $-compact sections. Fund. Math. 165 (2000), 191–202.
MR 1805424
[13] J. Kaniewski and R. Pol:
Borel-measurable selectors for compact-valued mappings in the non-separable case. Bull. Pol. Acad. Sci. Math. 23 (1975), 1043–1050.
MR 0410657
[15] V. Komínek:
A remark on the uniformization in metric spaces. Acta Univ. Carolin. Math. Phys. 40 (1999), 65–74.
MR 1751542