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DESCRIPTIVE PROPERTIES OF MAPPINGS BETWEEN

NONSEPARABLE LUZIN SPACES

Petr Holický and Václav Komínek, Praha
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Abstract. We relate some subsets G of the product X × Y of nonseparable Luzin (e.g.,
completely metrizable) spaces to subsets H of

� � × Y in a way which allows to deduce
descriptive properties of G from corresponding theorems on H. As consequences we prove
a nonseparable version of Kondô’s uniformization theorem and results on sets of points y
in Y with particular properties of fibres f−1(y) of a mapping f : X → Y . Using these, we
get descriptions of bimeasurable mappings between nonseparable Luzin spaces in terms of
fibres.

Keywords: nonseparable metric spaces, Luzin spaces, σ-discrete network, uniformization,
bimeasurable maps

MSC 2000 : 54H05, 28A05, 54E40

1. Introduction and notation

Our main aim is to demonstrate a possibility of getting results on (index-σ-

discrete) mappings f from a complete metric space X to a metric space Y by a
separable reduction. It is almost standard that the study of most properties of

(index-σ-discrete) mappings f can be transfered to the study of the (index-σ-discrete)
projection of the graph G of f to Y . We are going to show that many questions can

be further translated to the study of a projection of a subset of � � × Y to Y . Let
us recall that in [9] we described a general method how to deduce some results on

projections along separable spaces to nonseparable spaces from classical results on
projections to separable spaces.

The result on the transfer of projections along nonseparable spaces to projections
along separable ones is formulated in Theorem 3.2 in Section 3.

The research was supported in part by the projects GAČR 201/03/0931, GAČR
201/03/0933, and MSM113200007.
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As applications of Theorem 3.2, and of the method presented in [9], we get easily

a nonseparable version of Kondô’s uniformization theorem in Section 4 and results
on the descriptive properties of sets of points y in Y with particular properties of
fibres f−1(y) of a mapping f : X → Y in Section 5.

Characterizations of bimeasurable maps of nonseparable spaces in terms of their

fibres are obtained using the results of Section 5 in the last section.

In fact, our results deal also with not necessarily metrizable topological spaces. We

recall a few notions of generalized analytic and Luzin topological spaces, introduced
in [4] to describe the weak topologies of some nonseparable Banach spaces. We

summarize and deduce several properties of them in Section 2. In particular, a fairly
general Theorem 2.8 on graphs and ranges of measurable mappings is proved.

The identity mapping on the corresponding set is denoted by id. We use πX

and πY to denote the projection mappings of X × Y to X and Y , respectively. If

B ⊂ X × Y , we put Bx = {y ∈ Y ; (x, y) ∈ B} and By = {x ∈ X ; (x, y) ∈ B}.
If f1 : X1 → Y1 and f2 : X2 → Y2, then f1 × f2 : X1 × X2 → Y1 × Y2 is defined
by (f1 × f2)(x1, x2) = (f1(x1), f2(x2)). Given families A and B of subsets of X

and Y , respectively, we write A × B for the family {A × B ; A ∈ A, B ∈ B}. If
moreover f : X → Y , we write f(A) and f−1(B) instead of {f(A) ; A ∈ A} and
{f−1(B) ; B ∈ B}.
Given a family E of subsets of a set X , we use S(E) to denote the class of sets

obtained from elements of E by the Souslin (or Aleksandrov) operation, i.e., the
sets of the form A =

⋃
ν∈ � �

⋂
k∈ �

Aν1,...,νk
, where As ∈ E for every finite sequence s of

positive integers. If A and the complement of A are in S(E), we write A ∈ bi-S(E).
We use Eσ and Eδ to denote the families of unions and intersections of all at most
countable subfamilies of E , respectively.
We say that N is a network for a family E of subsets of a set X if E =

⋃{N ∈
N ; N ⊂ E} for every E ∈ E . We say that N is a network (a base) of a topological
space X if N is a network (a network consisting of open sets) for the family of all
open subsets of X .

All topological spaces are supposed to be Hausdorff and regular. If X is a topo-
logical space, we denote by F(X), G(X), K(X), and B(X) the classes of all closed,
open, compact, and Borel subsets of X , respectively. The symbol (F∧G)(X) stands
for the family of sets of the form F ∩ G with F ∈ F(X) and G ∈ G(X). Similar
notation is used if other families stand in the place of F and G.

A collection E of subsets of a topological space X is said to be discrete if each

point of X belongs to an open set which meets at most one element of E . A collection
E is relatively discrete (or, equivalently, isolated) if E is discrete in ⋃ E . A collection
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E is said to be scattered if E is disjoint and there is a well-ordering 6 of E such that,
for each E ∈ E , the set ⋃{F ∈ E ; F 6 E} is open relative to ⋃ E .
It is clear that any discrete collection is isolated, and it is also not difficult to show

that any isolated collection is scattered [4, Lemma 2.2(e)].

In what follows D = D(X) stands for the family of all discrete, I = I(X) for
the family of all relatively discrete, and S = S(X) for the family of all scattered
families in the corresponding topological space X . We use the symbols D, I, and
S sometimes also as an abbreviation for the words discrete, isolated, and scattered,
respectively, as this should not lead to any confusion.

We use Q for any of the symbols D, I, or S until Theorem 2.1.
By saying that an indexed family (Da ; a ∈ A) is in Q (or is Q) we mean that

the set {Da ; a ∈ A} is in Q and Da ∩ Db = ∅ (equivalently, Da 6= Db if they are

nonempty) if a 6= b, a, b ∈ A.

By EQ we denote the collection of all sets that are unions of Q families of elements
of E . A family is σ-Q if it is the union of countably many Q families.
We shall use without further reference the easy fact that

⋃
a∈A

Ea is in Q(X) if all

Ea’s and the family {
⋃Ea ; a ∈ A} are in Q (see [4, Lemma 2.2] for the most difficult

case of scattered families).

Clearly, if the family E is relatively discrete, then there are I-associated open sets
U(E), E ∈ E , such that U(E) ∩⋃ E = E, and if E is scattered, then there is a well-
ordering 6 of E and S-associated open sets U(E) such that U(E)∩⋃ E =

⋃{F ∈ E ;
F 6 E}. It can be easily verified that the existence of the correspondingly associated
sets U(E), E ∈ E , implies that E is relatively discrete or scattered, respectively
(see [4, Lemma 2.1 and the remark after it] for the scattered families). We put

H(E) = E ∩ U(E) if E is in I or S. We see in each of these cases that the family
(H(E) ; E ∈ E) is in I or S, respectively, and each H(E) is in (F ∧G)(X) (cf. also
[4, Lemmas 2.3 and 3.2]).

An indexed family E = (Ea ; a ∈ A) of subsets of a topological space X is called

σ-Q resolvable if every Ea ∈ E is the union of a family of sets {Ea(n, l) ; n ∈
� , l ∈ Λ(n, a)} such that the indexed families (Ea(n, l) ; a ∈ A, l ∈ Λ(n, a)), n ∈
� , belong to Q. For our convenience, we may and do suppose that all the index
sets Λ(n, a) are equal to one fixed set Λ. Indeed, putting Λ =

⋃
n∈ � ,a∈A

Λ(n, a) and

E(n, l) = ∅ if l /∈ Λ(n, a), the modified decomposition has the required properties,
too. The notion of σ-Q-resolvable families is equivalent with σ-Q-decomposable
families defined by Hansell in [4, p. 6] if Q stands for discrete or isolated families.
However, the notion of σ-scattered resolvable families does not coincide with that

of σ-scattered decomposable ones. This is related to Hansell’s example [4, Example
2.9].
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Let us note that the existence of a σ-discrete basis of metric spaces implies that

scattered families of subsets of a metric space are σ-discrete resolvable (in fact σ-
discrete decomposable). This shows that the notions of σ-discrete resolvability, σ-
isolated resolvability, and σ-scattered resolvability coincide in metric spaces.

It is not difficult to check that an indexed family (Ea ; a ∈ A) of subsets of
a topological space X is σ-Q-resolvable if and only if it is point-countable (as an
indexed family, i.e., for each x ∈ X there are at most countably many a ∈ A such that
x ∈ Ea) and has a σ-Q network. Point-countable families with a σ-Q network were
used by Hansell in his definition of Q-(K-)analytic spaces in [4, pp. 7 and 11]. In [5]
Hansell used a modified definition of σ-Q-decomposable families which is equivalent
with that of our σ-Q-resolvable families, although it is formally different.
Let HQ(X) ⊂ BQ(X) denote the smallest algebra of subsets of X which contains

(F ∧G)(X) and which is closed under unions of Q families of its elements. Let us
recall (see, e.g., [10]) that HS(X) = (F ∧G)S(X).
Finally, byBQ(X) we denote the smallest σ-algebra of subsets ofX which contains

all Borel sets of X and is closed under unions of Q families of its elements. Its
elements are called Q-Borel sets.
It follows easily from [4, Lemma 3.3(b)] that S(BI(X)) = S(B(X)) for every

topological space X .
The classes of BD(X), BI(X), and BS(X) sets coincide if X is metrizable (their

elements are called extended Borel sets) due to the existence of a σ-discrete basis
for X . Consequently, in all the three cases of Q the class S(BQ(X)) coincides with
the class S(F(X)) of all Souslin sets if X is metrizable. In separable metrizable
spaces the families of Borel and extended Borel sets coincide, while this is not the

case in general nonseparable metric spaces.

2. Generalized analytic and Luzin topological spaces

We are going to present results on mappings between (bi-)S(F) subsets of com-
plete metric spaces and also between their generalizations to Q-analytic and Q-Luzin
topological spaces introduced by Hansell in [4] as mentioned in the introduction. A

mapping f : X → Y is said to be index-σ-Q if (f(Ea) ; a ∈ A) is σ-Q-resolvable,
whenever (Ea ; a ∈ A) is σ-Q-resolvable in X , i.e., f preserves σ-Q-resolvable in-
dexed families. It is not difficult to check that f is index-σ-Q if it maps indexed
families from Q(X) to σ-Q(X)-resolvable indexed families.
A topological space X is called Q-analytic if there exists a continuous index-σ-

Q mapping f of a complete metric space M onto X . A topological space X is

Q-Luzin, if it is Q-analytic, and the mapping f in the definition can be taken one-
to-one. The mapping f in the above definitions is called a Q-analytic or a Q-Luzin
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parametrization of X , respectively. Every complete metric space M is an injective

image of a closed subset F of D
�
for some discrete space D under a continuous and

index-σ-discrete mapping ϕ : F → M by [3, Theorem 5.6]. Due to this fact and
the fact that every scattered family in a metric space is σ-discretely decomposable

as mentioned above, we may replace the complete metric space M in the preceding
definitions by a closed subset F ⊂ D

�
for some discrete D. If X has a countable

network, then the notions of D-analytic, I-analytic, and S-analytic spaces coincide
and we speak about analytic spaces. Similarly we define Luzin spaces.

Isolated-analytic spaces were introduced by Hansell under the name descriptive

spaces and scattered-analytic spaces under the name almost descriptive spaces in
[4]. We however follow the terminology used later in [5]. The basic properties of

these spaces can be found in [4]. Let us point out that, e.g., every Q-analytic space
has a σ-Q network and that the classes of Q-analytic spaces (sets) are closed under
countable products, countable unions and intersections, and unions ofQ families. Let
us point out that, e.g., all Banach spaces which admit an equivalent norm having

the Kadec property, are isolated-analytic with respect to the weak topology. This
is one of the main reasons why we are interested also in nonmetrizable spaces here.

We should keep in mind that a metrizable space X is D-analytic if and only if it
is I-analytic, and also if and only if it is S-analytic as the three notions of σ-Q-
resolvability coincide in metrizable spaces. Similar claim is true concerning Q-Luzin
metrizable spaces. However, in the case of general topological spaces, the fact that

discrete families in X ⊂ Y need not be discrete in Y makes the notions with Q = D
less natural. Therefore, we use P = P(X) which stands just for I or S rather than
Q, and we should realize that the above remarks give a possibility to replace I or S
by D in what follows if we limit ourselves just to metrizable spaces.
We will need later a few facts on P-analytic and P-Luzin spaces that either follow

from known results easily or can be proved by straightforward modification of stan-

dard methods. We need the following version of the “perfect set theorem”. Since we
did not find any reference for it, we indicate a proof.

Theorem 2.1. Let A be a scattered-analytic space which is not σ-scattered.

Then there is a homeomorphic copy of the Cantor set in A.

�����	��

. Let f : M → A be a scattered-analytic parametrization. As f maps, in

particular, σ-discrete sets in M to σ-scattered subsets of A and M is paracompact,

subtracting from M all its σ-discrete open subsets (i.e., equivalently, the open sets
with σ-scattered image), we get a nonempty closed F ⊂ M with f(U) not σ-scattered
for every nonempty open subset U of F . Thus we may suppose that F = M further
on. Proceeding inductively in n ∈ � in an almost obvious way, we find nonempty
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open sets Uι, ι ∈ {0, 1}n, such that

Ui1,...,in+1 ⊂ Ui1,...,in , f(Uι) ∩ f(Uι′) = ∅ if ι 6= ι′, and diamUi1,...,in 6 1
n

.

Finally, it is not difficult to check that the mapping that takes each (i1, i2, . . .) ∈
{0, 1} � to the only element of f

( ⋂
n∈ �

Ui1,...,in

)
is a homeomorphism. �

Theorem 2.2. Let A be a subset of a P-analytic space X . Then

(a) A is P-analytic if and only if A is in S(BS(X));
(b) B is in bi-S(BS(X)) if and only if B ∈ BS(X).

Moreover, if A is I-analytic, then A ∈ S(B(X)).
�����	��


. (a) If A ⊂ X is P-analytic, it is clearly scattered-(K-)analytic. Accord-
ing to [6, Proposition 2], see also [7, Theorem 2], it is in S(BS(X)).
Conversely, let A ∈ S(BS(X)). According to [6, Proposition 2] or [7, Theorem 2],

it is scattered-K-analytic. SinceX is P-analytic, it has a σ-P network [8, Theorem 5],
thus also A has a σ-P network. Using [8, Theorem 5] again, we get that A is P-
analytic.

(b) Every scattered-Borel set is in bi-S(BS(X)) in any space. According to (a),
S(BS(X)) coincides with the collection of all P-analytic subspaces of X . So the
elements of bi-S(BS(X)) are bi-scattered-analytic, and they coincide with BS(X)
sets according to [5, Theorem 6.28] (or [7, Theorem 5]).

The last assertion follows from [4, Theorem 4.1]. �

Theorem 2.3. Let B be a subset of a P-Luzin space X . Then the following are

equivalent.

(a) B is P-Luzin,
(b) B ∈ bi-S(BS(X)), and
(c) B ∈ BS(X).

If P = I, then S(BS(X)) can be replaced by S(B(X)) in (b) and BS(X) by
BI(X) in (c).
�����	��


. The equivalence of (b) and (c) holds by Theorem 2.2(b).

To prove (c) implies (a), let B ∈ BS(X). If f : M → X is a P-Luzin parametriza-
tion of X , then f−1(B) is in BS(M). In metrizable spaces, BS(M) = BD(M),
and in complete metric spaces the sets from BD are D-Luzin by [3, Theorem 5.6].
Let ϕ : L → M be a D-Luzin parametrization of f−1(B). Then f ◦ ϕ is a P-Luzin
parametrization of B.
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To prove (a) implies (c) let B be P-Luzin. Then B is scattered-(K-)Luzin, and

consequently, B ∈ BS(X) due to [7, Theorem 7].
In the particular case of an isolated-Luzin space X , S(BS(X)) in (b) can be

replaced by S(B(X)) according to Theorem 2.2. To improve (c) as required in this
case, note that both B and X \ B are isolated-analytic by Theorem 2.2. Using the
separation principle [5, Theorem 6.28], we get that B ∈ BI(X). �

Corollary 2.4. Let X, Y be P-analytic (or P-Luzin) spaces and f : X → Y be

such that f−1(BP(Y )) ⊂ BP(X). Then the preimages of P-analytic (or P-Luzin)
subsets of Y are P-analytic (or P-Luzin) subsets of X .
�����	��


. According to Theorem 2.2(a), P-analytic sets in Y are S(BP (Y )),
their preimages are S(BP(X)) by our assumption on f , hence P-analytic by Theo-
rem 2.2(a) again. If Y is P-Luzin, the P-Luzin sets in Y are bi-S(BP(Y )) by Theo-
rem 2.3, their preimages are bi-S(BP (X)), thus P-Luzin by Theorem 2.3 again. �

We need some almost standard results on product spaces and mappings. The next
two assertions are slight modifications of those which can be found, e.g., in [5].

Lemma 2.5. Let X and Y be topological spaces and X have a σ-P network N .
For every P family T of sets in X × Y there are open sets UN

T ⊂ Y , for N ∈ N and
T ∈ T , so that the sets TN = T ∩ (N × UN

T ), N ∈ N , satisfy
T =

⋃
N∈N

TN and

(πY (TN) ; T ∈ T ) is in P(Y ) with P-associated open sets UN
T = U(πY (TN)),

T ∈ T , for every N ∈ N .
�����	��


. Let (U(T ) ; T ∈ T ) be a collection of P-associated open sets for T .
For each T ∈ T and N ∈ N we denote by UN

T the maximal open set in Y which
satisfies N × UN

T ⊂ U(T ). Put TN = T ∩ (N × UN
T ). Then

⋃
N∈N

TN = T . To show

this, consider a t ∈ T . Since T ⊂ U(T ), there are open sets U1 ⊂ X and U2 ⊂ Y

such that t ∈ U1 × U2 ⊂ U(T ). As N is a network of X , there is an N ∈ N such
that πX(t) ∈ N ⊂ U1. Then N × U2 ⊂ U(T ), and thus U2 ⊂ UN

T , t ∈ N × UN
T , and

consequently, t ∈ TN .

Finally, for a given N ∈ N , the sets UN
T , T ∈ T , are obviously P-associated open

sets for the family (πY (TN ) ; T ∈ T ), which is thus in P . �

Lemma 2.6.

(a) Let fi : Xi → Yi, i = 1, 2, . . ., be index-σ-P mappings between topological
spaces and Xi, i = 2, 3, . . ., have a σ-P network. Then the product mapping∏
n∈ �

fn : (x1, x2, . . .) 7→ (f1(x1), f2(x2), . . .) is also index-σ-P .
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(b) Let f : X → Y be an index-σ-P mapping, where either X or Y has a σ-P
network. Let G be the graph of f . Then the restriction to G of the projection

πY : X × Y → Y is also index-σ-P .
�����	��


. (a) Let Nn be a σ-P network for Xn, n = 2, . . . The collection N =
{π−1

2 (N2) ∩ . . . ∩ π−1
k (Nk) ; k > 2, Ni ∈ Ni}, where πi stands for the projection of∏

n>2 Xn to Xi, is a σ-P network for ∏
n>2 Xn.

Let T be in P
(∏

n∈ � Xn

)
. We are going to prove that

((∏
n∈ � fn

)
(T ) ; T ∈ T

)
is

σ-P resolvable.
Let (U(T ) ; T ∈ T ) be an indexed family of P-associated open sets for T .
Using Lemma 2.5, we get open sets UN

T in X1 such that T =
⋃

N∈N T N , where
T N = T ∩ (UN

T ×N). Moreover, given an N ∈ N , the family {π1(T N) ; T ∈ T } is
in P(X1) with the P-associated open sets UN

T , T ∈ T .
Now
( ∏

n∈ �
fn

)
(T ) ⊂

⋃

N∈N

( ∏

n∈ �
fn

)
(T N ) ⊂

⋃

N∈N

(
f1(π1(T N))×

( ∏

n>2

fn

)
(N)

)
.

The mapping
∏

n>2 fn is index-σ-P by [5, Lemma 6.9 (d)]. So the family((∏
n>2 fn

)
(N) ; N ∈ N

)
is σ-P-resolvable, and thus the family

(( ⋃

T∈T
f1(π1(T N))

)
×

(∏

n>2

fn

)
(N) ; N ∈ N

)

is also σ-P-resolvable.
Since f1 is an index-σ-P mapping, (f1(π1(T N)) ; T ∈ T ) is σ-P-resolvable for each

N , and clearly also
(
f1(π1(T N ))×

(∏
n>2 fn

)
(N) ; T ∈ T

)
is σ-P-resolvable. Using

[4, Lemma 2.2 (c)], we get that
(

f1(π1(T N))×
(∏

n>2

fn

)
(N) ; T ∈ T , N ∈ N

)

is σ-P-resolvable, and by [4, Lemma 2.7 (c)], we get that
( ⋃

N∈N
(f1(π1(T N))×

(∏

n>2

fn

)
(N)) ; T ∈ T

)

is σ-P-resolvable. Thus also
((∏

n∈N fn

)
(T ) ; T ∈ T

)
is σ-P-resolvable which con-

cludes the proof of (a).

(b) Let us denote the restriction πY |G by p. Then p = h ◦ g, where g : G → Y ×Y

maps (x, y) to (f(x), y) and h : D = {(y, y) ; y ∈ Y } → Y maps (y, y) to y. The

inclusion g(G) ⊂ D holds because (x, y) ∈ G implies y = f(x). Now, g is index-σ-P
according to the part (a), and h is a homeomorphism, so p is index-σ-P . �
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We derive a quite general theorem on graphs and ranges of measurable mappings

(cf. [1, Theorem 1]) in the next two assertions.

Lemma 2.7. Let X and Y be topological spaces, f : X → Y be a mapping with

graph G, and A be a family of subsets of X . Let M be a metrizable space with a

σ-discrete basis B and ϕ : M → Y be continuous such that f−1(ϕ(I)) ∈ A for each
I ∈ B. Then the set H = {(x, m) ∈ X ×M ; (x, ϕ(m)) ∈ G} is in (A×B)Dσδ.

�����	��

. Let us fix a compatible metric d on M . Since B is a σ-discrete basis of

M , we can write B =
⋃
n
Bn, where Bn, n ∈ N , are σ-discrete covers of M by open

sets of diameter at most 1/n, and Bn =
⋃
m
Bm

n , where the families Bm
n , m ∈ N , are

discrete. We prove that H =
⋂
n

⋃
m

⋃
I∈Bm

n

(XI × I), where XI = {x ∈ X ; Hx ∩ I 6= ∅}.

The inclusion ⊂ is obvious. To prove the other one, suppose that (x, ι) /∈ H . Since

Hx = ϕ−1(f(x)), it is closed, and there exists an n ∈ � such that d(ι, Hx) > 1/n. If
ι ∈ I and I ∈ Bn, then I ∩Hx = ∅, thus x /∈ XI . So (x, ι) /∈ XJ × J for all J ∈ Bn,

and also the other inclusion is proved.

For each I ∈ B, XI = f−1(ϕ(I)) is in A, so XI × I is in A × B. Each family Bm
n

is discrete, hence
⋃

I∈Bm
n

(XI × I) is in (A×B)D and H is in (A×B)Dσδ. �

Theorem 2.8.

(a) Let Y be a P-analytic space (or a P-Luzin space) and f : X → Y be such

that the preimages of P-analytic subspaces are P-analytic (or such that the
preimages of P-Luzin subspaces are P-Luzin). Then the graph G of f is

P-analytic (or P-Luzin, respectively).
(b) If moreover f is index-σ-P and Y is P-analytic (or injective and index-σ-P ,
and Y is P-Luzin), then f(X) is P-analytic (or P-Luzin, respectively).

�����	��

. (a) Since Y is P-analytic (or P-Luzin), there exists a complete metric

space M and a continuous (or continuous and injective) index-σ-P parametrization
ϕ : M → Y . Let B be a σ-discrete basis of M . Then, for each B ∈ B, ϕ(B)
is P-analytic (or P-Luzin), and f−1(ϕ(B)) is of the same type. According to the
preceding Lemma 2.7, H = {(x, m) ∈ X × M ; (x, ϕ(m)) ∈ G} is in (A × B)Dσδ,

where A is the class of P-analytic (or P-Luzin) subsets of X . So H is P-analytic
(P-Luzin) by Theorems 2.2 and 2.3. Since G = (id×ϕ)(H) and the mapping id×ϕ

is index-σ-P (Lemma 2.6(a)) and continuous (or continuous and injective), it follows
from the definition that G is P-analytic (or P-Luzin).
(b) According to part (a), the graph G of f is P-analytic (or P-Luzin). The

restriction p to G of the projection πY : X × Y → Y is index-σ-P according to
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Lemma 2.6(b). If f is injective, then the same holds for p. The projection is also

continuous, hence it follows from the definition that f(X), which is equal to πY (G),
is P-analytic (or P-Luzin). �

As we are going to get results on subsets of products of topological spaces as
applications of the reduction described in the next section and of the corresponding

results from [9], we need the following two lemmas which improve [9, Lemma 4], where
scattered-Borel sets were not investigated. We prove first a result on generation of
scattered-Borel sets.

Lemma 2.9. Let C be a family of subsets of a topological spaceX which contains

all Borel sets and which is closed under intersections of countable subfamilies and

under unions of σ-scattered subfamilies. Then C contains all scattered-Borel sets.
�����	��


. Put C0 = {C ∈ C ; X \C ∈ C}. Obviously, C0 contains all Borel sets, is
closed under unions and intersections of countable subfamilies, and is closed under

the operation of taking complements. Thus it is sufficient to prove that unions of
scattered subfamilies of C0 are in C0 since then BS(X) ⊂ C0 ⊂ C. Let E ⊂ C0 be

scattered. Then
⋃ E ∈ C by our assumptions. Let H(E) be as in the introduction,

i.e., such that E ⊂ H(E) ∈ (F ∧G)(X) for E ∈ E and (H(E) ; E ∈ E) is scattered.
Then X \⋃ E = (X \⋃{H(E) ; E ∈ E}) ∪⋃{H(E) \E ; E ∈ E}. The latter union
is in C as a scattered union of elements of C. Realizing that ⋃{H(E) ; E ∈ E} ∈
HS(X) ⊂ C, we get that X \ ⋃{H(E) ; E ∈ E} is in HS(X) ⊂ C, too. So the
set X \ ⋃ E belongs to C being the union of two elements of C. We conclude that⋃ E ∈ C0, and the proof is finished. �

Lemma 2.10. Let X , Y be topological spaces and X have a countable basis.

Then

S
(
BP(X × Y )

)
= S

(
BP(X)×BP(Y )

)
.

�����	��

. As we have already mentioned, the case P = I was proved in [9,

Lemma 4]. So it remains to prove the case P = S. The inclusion S(BS(X) ×
BS(Y )) ⊂ S(BS(X × Y )) is obvious. As in [9, Lemma 4] we can prove easily that

G(X × Y ) ⊂ (G(X)×G(Y ))σ ⊂ S(BS(X)×BS(Y ))

and

F(X × Y ) ⊂ (F(X)× F(Y ))σδ ⊂ S(BS(X)×BS(Y )).

The family S(BS(X)×BS(Y )) is closed under Souslin operation and thus also under
unions and intersections of countable subfamilies. Hence B(X × Y ) ⊂ S(BS(X) ×
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BS(Y )). We are going to prove that S(BS(X) ×BS(Y )) is closed under unions of
scattered subfamilies, which according to Lemma 2.9 gives that

BS(X × Y ) ⊂ S(BS(X)×BS(Y )).

Then S(BS(X × Y )) ⊂ S(BS(X)×BS(Y )) and this will conclude the proof of the
lemma.

Let U be a countable basis of X such that U ⊃ {∅, X} and put U c = {X \U ; U ∈
U}. We have that S((U ∧Uc)×BS(Y )) = S(B(X)×BS(Y )) = S(BS(X)×BS(Y ))
since U ∧ Uc contains U ∪ Uc and U is a countable basis of X and BS(X) = B(X)
for X with a countable basis. So it is sufficient to prove that S((U ∧ U c) ×BS(Y ))
contains the unions of its scattered subfamilies.

Let T ⊂ S((U ∧ Uc)×BS(Y )) be scattered. Following Lemma 2.5 we may write
each T ∈ T as T =

⋃
V ∈U

TV , where (πY (TV ) ; T ∈ T ) is scattered for V ∈ U .

Moreover, TV being of the form T ∩ (V × UV
T ) with UV

T open belongs to S((U ∧
Uc) × BS(Y )) again. We may thus suppose without loss of generality that T =
(Ta ; a ∈ A) ⊂ S((U ∧ Uc) × BS(Y )) is such that (πY (Ta) ; a ∈ A) is scattered.
For each a ∈ A we find some V a

n1,...,nk
∈ U ∧ Uc and Ba

n1,...,nk
∈ BS(Y ) such that

Ta =
⋃

(n1,n2,...)∈ � �
⋂

k∈ �
(V a

n1,...,nk
× Ba

n1,...,nk
). Replacing, if necessary, V a

n1,...,nk
by

k⋂
i=1

V a
n1,...,ni

and Ba
n1,...,nk

by
k⋂

i=1

Ba
n1,...,ni

, we may and do suppose that the scheme

is regular, i.e.,

V a
n1,...,nk+1

×Ba
n1,...,nk+1

⊂ V a
n1,...,nk

×Ba
n1,...,nk

.

We may and do suppose that the sets Ba
n1,...,nk

, a ∈ A, are pairwise disjoint for each
(n1, . . . , nk) ∈ � k by intersecting them with the (F∧G)(Y ) sets H(πY (Ta)), a ∈ A,

from the introduction, which form a scattered family. It follows that

⋃

a∈A

Ta =
⋃

a∈A

⋃

(n1,n2,...)∈ � �
⋂

k∈ �
(V a

n1,...,nk
×Ba

n1,...,nk
)

=
⋃

(n1,n2,...)∈ � �
⋂

k∈ �
⋃

a∈A

(V a
n1,...,nk

×Ba
n1,...,nk

).

Using further the fact that U is countable, we may write U ∧U c as {V (i) ; i ∈ � } to
get ⋃

a∈A

Ta =
⋃

(n1,n2,...)∈ � �
⋂

k∈ �
⋃

i∈ �
⋃

{a ; V a
n1,...,nk

=V (i)}
(V (i)×Ba

n1,...,nk
).
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The last union over a’s can be replaced by V (i)× ⋃
{a ; V a

n1,...,nk
=V (i)}

Ba
n1,...,nk

, which

is in (U ∧ Uc)×BS(Y ). Their countable unions over i’s are in S((U ∧ U c)×BS(Y ))
and applying to them the Souslin operation, we remain in the latter class. This

concludes the proof. �

3. A reduction of projections along nonseparable spaces to

projections along separable spaces

Let ξ = (ξ1, . . . , ξk) or ξ = (ξ1, . . .). If m ∈ {1, . . . , k}, we use ξ|m to denote
the sequence (ξ1, . . . , ξm). The symbol ξ|0 stands for the empty sequence. If η =
(η1, . . . , ηn), then ξ η̂ stands for the concatenation (ξ1, . . . , ξk, η1, . . . , ηn) and the
symbol η− is an abbreviation for η|(n− 1) in what follows.

Lemma 3.1. Let D be an arbitrary set and let (Yα ; k ∈ � , α ∈ Dk) be an
indexed σ-P-resolvable family in a topological space Y such that Yα ⊂ Yα− if k > 1
and α ∈ Dk.

Then there is an index set Λ and, for every k ∈ � , α ∈ Dk, ν ∈ � k and λ ∈ Λk,

there is a set Eν,λ
α in HP(Y ) such that the following properties hold true for every

k ∈ � :
(1k) Yα ⊂

⋃
ν∈ � k

⋃
λ∈Λk

Eν,λ
α for every α ∈ Dk.

(2k) Eν,λ
α ⊂ E

ν−,λ−
α− if k > 1, α ∈ Dk, ν ∈ � k , and λ ∈ Λk.

(3k) The family

Eν = (Eν,λ
α ; α ∈ Dk, λ ∈ Λk)

belongs to P for every ν ∈ � k .

(4k) The family

Eα = (Eν,λ
α ; ν ∈ � k , λ ∈ Λk)

is disjoint for every α ∈ Dk.

�����	��

. Let (Yα(n, l); k ∈ � , α ∈ Dk, n ∈ � , l ∈ Λ) be the corresponding

decomposition of the σ-P-resolvable family (Yα; α ∈ Dk, k ∈ � ).
To avoid repetition of the construction needed both in the case k = 1 and in

the general induction step, we extend our statement a bit artificially to the case
k = 0 by putting � 0 = D0 = {∅}, Λ0 = {∅}, Y∅ = Y , E∅,∅

∅ = Y . Let the families

(Eν,λ
α ; α ∈ Dk, ν ∈ � k , λ ∈ Λk) of HP(Y )-sets fulfilling the conditions (1k), (2k),

(3k), and (4k) be already defined for some k ∈ {0, 1, 2, . . .}.
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Then the family

(Yαˆa ∩ Eν,λ
α ; a ∈ D)

is σ-P-resolvable with the corresponding decomposition (F ν,λ
αˆa(n, l) = Yαˆa(n, l) ∩

Eν,λ
α ; a ∈ D, n ∈ � , l ∈ Λ) for fixed α ∈ Dk, ν ∈ � k , and λ ∈ Λk by our assumptions.
For every n ∈ � let

(D) (H(F ν,λ
αˆa(n, l)) ; a ∈ D, l ∈ Λ)

be the P family of (F ∧G)-sets from the introduction.
Finally, for every ν ∈ � k , λ ∈ Λk, and α ∈ Dk we put

(E) Eνˆn,λ l̂
αˆa = Eν,λ

α ∩
(

H(F ν,λ
αˆa(n, l)) \

⋃

n′<n

⋃

l′∈Λ

H(F ν,λ
αˆa(n′, l′))

)
.

We proceed inductively in k to prove that Eν,λ
α ∈ HP(Y ) for ν ∈ � k , α ∈ Dk,

λ ∈ Λk.
Clearly, E∅,∅

∅ = Y is in HP(Y ) for ν ∈ � k , α ∈ Dk, λ ∈ Λk. Suppose that

Eν,λ
α ∈ HP(Y ). Let us recall that HP(Y ) is an algebra closed under unions of

P families of its elements. Since the sets H(F ν,λ
αˆa(n, l)) belong to HP(Y ) by their

definition and the families {H(F ν,λ
α â(n′, l′)) ; l′ ∈ Λ} are in P , we see from (E) that

Eνˆn,λ l̂
αˆa ∈ HP(Y ).
We can proceed inductively again to prove (1k). We have Y∅ = E∅,∅

∅ = Y .
Let Yα ⊂ ⋃

ν∈ � k

⋃
λ∈Λk

Eν,λ
α for α ∈ Λk. By the assumptions Yαˆa ⊂ Yα for a ∈

Λ. So Yαˆa ⊂ ⋃
ν∈ � k

⋃
λ∈Λk

Yαˆa ∩ Eν,λ
α . Further, Yαˆa ∩ Eν,λ

α =
⋃

n∈ �
⋃

l∈Λ

F ν,λ
αˆa(n, l) ⊂

⋃
n∈ �

⋃
l∈Λ

H(F ν,λ
αˆa(n, l)) ∩ Eν,λ

α . It is now obvious from (E) that

Yαˆa ∩ Eν,λ
α ⊂

⋃

n∈ �
⋃

l∈Λ

H(F ν,λ
αˆa(n, l)) ∩ Eν,λ

α =
⋃

n∈ �
⋃

l∈Λ

Eνˆn,λ l̂
αˆa ,

which proves (1k+1).

(2k) follows directly from the definition of E
νˆn,λ l̂
αˆa in (E).

We show, by induction in k = 0, 1, . . ., that (3k) is satisfied. The case k = 0
is trivial. Using (D) and the induction assumption that (Eν,λ

α ; α ∈ Dk, λ ∈ Λk)
is in P for every ν ∈ � k , we get by [4, Lemma 2.2 (a) and (b)] that also (Eν,λ

α ∩
H(F ν,λ

αˆa(n, l)) ; a ∈ D, l ∈ Λ) is in P , and it remains to note that, by (E), also each
family (Eνˆn,λ l̂

αˆa ; a ∈ D, l ∈ Λ) is in P for ν ∈ � k , n ∈ � , α ∈ Dk, λ ∈ Λk.

To prove (4k) note that if E
νˆn,λ l̂
αˆa , Eνˆn′,λ l̂′

αˆa and n < n′, then, by (E), Eνˆn,λ l̂
αˆa ⊂

H(F ν,λ
αˆa(n, l)

)
and Eνˆn′,λ l̂′

αˆa ∩H(F ν,λ
αˆa(n, l)

)
= ∅. If n = n′ and l 6= l′, then, by (D),

Eνˆn,λ l̂
αˆa ∩Eνˆn′,λ l̂′

αˆa ⊂ H(F ν,λ
αˆa(n, l)) ∩H(F ν,λ

αˆa(n′, l′)) = ∅. �
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Theorem 3.2. Let A ⊂ D
� × Y , where Y is an arbitrary topological space and

D a discrete topological space. Suppose that πY |A, the projection of D � × Y to Y

restricted to A, is index-σ-P .
Then there exists a set B ∈ HP

σδ(D
� × Y ) such that A ⊂ B, and a mapping

Ψ: B → � � × Y such that

(1) Ψ−1(G) is in HP
σ (B) for every open subset G of � � × Y , and Ψ−1(BP ( � � ×

Y )) ⊂ BP(B).
(2) Ψ is index-σ-P ,
(3) πY

(
Ψ(x, y)

)
= {y} for every (x, y) ∈ B, and

(4) Ψ|By is a homeomorphism for every y ∈ Y .

�����	��

. Let Iα = {β ∈ D

� ; β|k = α} for k ∈ � and α ∈ Dk be the Baire

intervals in the space D
�
. Let us recall that the families Ik =

{
Iα ; α ∈ Dk

}
are

discrete for k ∈ � and that the Baire intervals form a σ-discrete basis of the topology

of D
�
. Let us consider the sets Yα = πY (A ∩ (Iα × Y )) for α ∈ Dk, k ∈ � . As πY |A

preserves indexed σ-P-resolvable families and the family (A∩ (Iα ×Y ) ; α ∈ Dk, k ∈
� ) is σ-P-resolvable, even σ-discrete, in A, the family (Yα ; α ∈ Dk, k ∈ � ) is σ-P-
resolvable, and so it easily follows that it satisfies the assumptions of Lemma 3.1.

Let
Eν,λ

α with α ∈ Dk, ν ∈ � k , λ ∈ Λk, k ∈ � ,

be the HP(Y ) sets obtained using Lemma 3.1.
We define the set B by

B =
⋂

k∈ �
⋃

ν∈ � k

⋃

α∈Dk

⋃

λ∈Λk

(Iα ×Eν,λ
α ).

It follows immediately that A ⊂ B due to property (1k) of Lemma 3.1, since A ⊂⋃
α∈Dk

Iα × Yα, and that B ∈ HP
σδ(D

� × Y ), since the unions over α ∈ Dk and over

λ ∈ Λk are unions of families from P due to the property (3k) of Lemma 3.1.
For a fixed pair (α, y) ∈ B we obtain by the property (4k) of Lemma 3.1 uniquely

determined sequences ν ∈ � � and λ ∈ Λ � such that y ∈
∞⋂

i=1

E
ν|i,λ|i
α|i . We put

Ψ(α, y) = (ν, y) in such a case.
The property (3) of Ψ is obvious.
Let us notice that every open subset of � � ×Y is the union of countably many sets

of the form Jµ × U , where U is an open subset of Y and Jµ = {ν ∈ � � ; ν|k = µ}
for µ ∈ � k and k ∈ � . As

Ψ−1(Jµ × U) =
{

(α, y) ∈ B ; y ∈ U ∩
⋃

λ∈Λk

Eµ,λ
α|k

}
,
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the preimages of open sets by Ψ are in HP
σ (B) which is the first claim from prop-

erty (1).
Consider the family B = {E ⊂ � � × Y ; Ψ−1(E) ∈ BP(B)}. By the already

proved part of (1), B ⊃ G( � � ×Y ). Since B is closed under unions and intersections
of countable subfamilies as well as under complements, it is sufficient to prove that
it is closed under the unions of P families to prove the remaining part of (1).
Let E ⊂ B be a P family consisting of sets from BP( � � × Y ). Assume that

N is a countable basis of � � . By Lemma 2.5 each E ∈ E can be decomposed
as E =

⋃
N∈N

EN , where EN = E ∩ (N × UN
E ) for some open sets UN

E , such that

(πY (EN ) ; E ∈ E) is a P family for every N ∈ N . By the properties of Ψ we have
πY (EN ) = πY (Ψ−1(EN )) for every EN , and so (Ψ−1(EN ) ; E ∈ E) is a P(B) family
for N ∈ N .
Now Ψ−1(EN ) = Ψ−1(E) ∩Ψ−1(N × UN

E ), where Ψ−1(E) ∈ BP(B) since E ⊂ B
and Ψ−1(N × UN

E ) ∈ BP(B) according to the already proved part of (1). Thus
Ψ−1(

⋃ E) =
⋃

N∈N

⋃
E∈E

Ψ−1(EN ) is a union of a σ-P family of sets from BP(B). Thus

the union
⋃ E belongs to B.

To prove (4), we show first that Ψ|By is injective. Let (α, y) and (β, y) be distinct
elements of B and let Ψ(α, y) = Ψ(β, y) = (ν, y). Then α|k 6= β|k for some k ∈ �
and y ∈ E

ν|k,λ
α|k ∩E

ν|k,ι
β|k for some λ, ι ∈ Λk. However, the family Eν|k is in P and thus

it is disjoint. This is a contradiction.

Now, fix y ∈ Y and ν ∈ � k . Then Ψ−1
(
Jν ×{y}

)
= B ∩

(⋃{Iα ; y ∈ ⋃
λ∈Λk

Eν,λ
α }×

{y}
)
, which is open in By × {y}. This proves that Ψ|By is continuous.

Conversely,

Ψ(Iα × {y}) = Ψ(B) ∩
( ⋃ {

Jν ; y ∈
⋃

λ∈Λk

Eν,λ
α

}
× {y}

)
,

and so Ψ−1|Ψ(B)y is also continuous and (4) is verified.
Finally, we prove (2), i.e., that Ψ preserves indexed σ-P-resolvable families. Let

R ∈ P(B). It suffices to show that (Ψ(Q) ∩ (Jν × Y ) ; Q ∈ R) is σ-P-resolvable for
every fixed k ∈ � and ν ∈ � k . Let k ∈ � and ν ∈ � k be fixed.

Since {Iα : α ∈ Dk, k ∈ � } is a σ-D network for D
�
, using Lemma 2.5 we find

Qα, α ∈ Dk, for Q ∈ R, such that Q =
⋃
α

Qα and (πY (Qα) ; Q ∈ R) is in P(Y ) for

each α ∈ Dk.
Since Ψ(S) ⊂ ⋃

ν∈ � k

⋃
λ∈Λk

(
Jν × (Eν,λ

α ∩ πY (S))
)
for each α ∈ Dk and each S ⊂

B ∩ (Iα × Y ), also

Ψ(Qα) ⊂
⋃

ν∈ � k

⋃

λ∈Λk

(
Jν × (Eν,λ

α ∩ πY (Qα))
)
.
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It suffices to check that the family of the right-hand sides indexed by α ∈ Dk and

Q ∈ R is σ-P-resolvable. This follows from the facts that the family (Jν × πY (Qα) ;
Q ∈ R) is in P( � � × Y ) and the family (Jν × Eν,λ

α ; α ∈ Dk, λ ∈ Λk) is also in
P( � � × Y ). Thus the mapping Ψ preserves indexed σ-P-resolvable families. �

4. Uniformization

Let X, Y be topological spaces and C ⊂ X × Y . Recall that U ⊂ C is a uni-

formization of C (over Y ) if for each y ∈ πY (C), the section Uy is a singleton.
We are going to improve the classical Kondô uniformization theorem ([14, The-

orem 36.14]). We achieve it using [9, Theorem 7], or the classical claim, and our
Theorem 3.2. Let us note that we get in this way also improvements of [17, Theo-

rem 17] and [15, Theorem 5.5].

Theorem 4.1. Let X , Y be P-Luzin spaces. Let the complement of C ⊂ X×Y

be in S(BS(X × Y )), and let the projection πY of X × Y onto Y restricted to C be

index-σ-S.
Then there exists a set U ⊂ C which is a uniformization of C whose complement

is in S(BS(X × Y )). If P = I, the complement of U is in S(B(X × Y )).
�����	��


. Suppose for a while that the claim holds if D
�
, with D being a discrete

space, stands in the place of X . Let ϕ : F ⊂ D
� → X be a continuous index-

σ-P bijection of a closed subset F of D
�
onto X for some discrete space D. Let

C0 be the preimage of C under the continuous bijective and index-σ-P mapping
ϕ × id : F × Y → X × Y . Its complement is in S(BP(D � × Y )) as the preimage
of the complement of C under ϕ × id. The projection to Y restricted to C0 is
index-σ-P being a composition of index-σ-P mappings ϕ × id (defined on C0) (see

Lemma 2.6(a)) and πY |C . Let U0 be a uniformization of C0 such that its complement
is in S(BS(D � × Y )). So the complement is P-analytic by Theorem 2.2. Then the
complement of U = (ϕ × id)(U0), as the image of the complement of U0 by ϕ × id,
is also P-analytic, or equivalently, S(BP(X × Y )), and U is a uniformization of C.

Thus we may and do suppose further on that C = C0 and X = D
�
. Using

Theorem 3.2, we get a P-Borel set B ⊃ C and an injective P-Borel measurable
index-σ-P mapping Ψ of B to � � × Y that preserves the second coordinate. Put
B1 = Ψ(B) and C1 = Ψ(C). The complement of C1 is the union of B1\C1 and of the

complement of B1. The set B is P-Luzin (as a P-Borel subset of the P-Luzin space
D
� × Y by Theorem 2.3) and the same holds for its image B1 (Theorem 2.8). It

follows that B1 is bi-S(BP ( � � ×Y )) (Theorem 2.3), so in particular its complement
is in S(BP( � � ×Y )). The set B1 \C1 is the image of the P-analytic set B \C by Ψ,
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so it is also P-analytic, and thus it is in S(BP( � � ×Y )) again, thus the complement
of C1 is in S(BP( � � × Y )).
Applying Lemma 2.10 and [9, Lemma 1] withM = BP(Y ) and H = B( � � ) to the

complement S1 of C1, we get a BP(Y ) measurable mapping f : Y → f(Y ) ⊂ {0, 1} �
and a set S2 ∈ S(B( � � )×F(f(Y ))) with S1y = S2f(y) as in [9, Lemma 1]. Note that
consequently the sets (id × f)(S1) = S2 and (id × f)(C1) = C2 form a partition of

� � ×f(Y ). Applying Kondô’s theorem to C2, we get a co-Souslin uniformization U2 of
C2. Its preimage U1 = (id×f)−1(U2) is the complement of (id×f)−1(( � � ×f(Y ))\U2)
which is in S(BP ( � � ×Y )) since the mapping id× f is BP( � � ×Y ) measurable and
U1 is a uniformization of C1.

Finally, putting U = Ψ−1(U1), we get the required uniformization of C, which
concludes the proof. �

5. Generalized projections along nonseparable spaces

In the next proposition, we use the notion of hereditary co-Souslin families of
subsets of separable metric spaces as in [9]. We recall the needed definitions.

Let Z be a topological space. A collection of sets C ⊂ F(Z) is called a hereditary
family if every H ∈ F(Z), such that H ⊂ F for some F ∈ C, is in C.
If Z is a separable metric space, we say that C ⊂ F(Z) is a co-Souslin family if

there exists a metric completion Ẑ of Z such that {SẐ ; S ∈ C} is a co-Souslin subset
of the Effros Borel structure on F(Ẑ).
Finally, let C be a family of closed sets in some space. We denote by C∗ the class

of all sets whose closures are in C.

Proposition 5.1. Let Y be a P-analytic space, D be a discrete space, S ⊂
D
� × Y be S-analytic, and suppose that the projection πY |S is index-σ-S. Let E be
a hereditary coanalytic family in F( � � ).

(a) Suppose that for every C ∈ E∗, each homeomorphic copy of C in � � is in E∗.
Put

C∗ = {E ⊂ D
�
; E is homeomorphic to some H ∈ E∗}.

Then the sets

C1 = {y ∈ Y ; Sy ∈ C∗}, C2 = {y ∈ Y ; Sy ∈ C∗σ}

are complements of S(BP) sets in Y .
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(b) Let Y and S be P-Luzin. Suppose that for every F ∈ E , each homeomorphic
copy of F in � � is in E . Put

C = {E ∈ F(D
�
) ; E is homeomorphic to some H ∈ E}.

Then the sets

C3 = {y ∈ Y ; Sy ∈ C}, C4 = {y ∈ Y ; Sy ∈ Cσ}

are complements of S(BP) sets in Y .

(c) Let the assumptions of (b) be fulfilled, and moreover let each element of E
be σ-compact.

Then the sets

C5 = {y ∈ Y ; ∅ 6= Sy ∈ C}, C6 = {y ∈ Y ; ∅ 6= Sy ∈ Cσ}

are complements of S(BP) sets in Y .

�����	��

. Using Theorem 3.2 we find a P-Borel set B ⊂ D

� ×Y containing S and

a one-to-one index-σ-P mapping Ψ: B → � � × Y such that Ψ−1(BP( � � × Y )) ⊂
BP(B), the mapping Ψ preserves the second coordinate, and Ψ|Sy is a homeomor-

phism for each y ∈ πY (B).
The set Ψ(S) is P-analytic in � � × Y , being the image of P-analytic S under

a P-Borel measurable index-σ-P mapping (Corollary 2.4 and Theorem 2.8). So
Ψ(S) is S(BP) in � � × Y by Theorem 2.2, C1 = {y ∈ Y ; Ψ(S)y ∈ E∗}, and
C2 = {y ∈ Y ; Ψ(S)y ∈ E∗σ}.
Now we use Lemma 2.10 and [9, Theorem 3] withM = BP(Y ) and H = B( � � ).
In the cases (b) and (c), both Ψ(B) and Ψ(S) are P-Luzin in � � × Y , being

one-to-one images of P-Luzin sets under a P-Borel measurable index-σ-P mapping
(Theorem 2.8). Thus Ψ(B) is bi-S(BP) in � � × Y due to Theorem 2.3, C3 =
{y ∈ Y ; Ψ(S)y ∈ E}, and similar equalities hold also for C4, C5, and C6. Using
Lemma 2.10 and [9, Theorem 3], we finish the proof. �

Remark. Let us mention that families of subsets of D
�
with at most k elements,

k > 0, are examples of families C from (a) and that the family of all compact subsets
of D

�
is an example of a family from (b) and (c).

In Theorem 5.2 we use a parametrization of X by a continuous index-σ-P injective
mapping, which clearly preserves the cardinality of sets, but it is difficult to say

anything about its behaviour to others properties, e.g., to compactness. So we obtain
in this way results analogous to the previous ones for classes C defined in terms of
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cardinality of their elements only. For a metric space X , we find, in Lemma 5.3,

another parametrization, which is not, in general, injective, but is continuous and
preimages of compact sets are compact (in other words, it is perfect), and then we
apply Proposition 5.1 to the class C of compact sets in Theorem 5.4.

Theorem 5.2. Let X be a P-Luzin space, the projection πY |S be index-σ-S,
κ ∈ [1,ℵ0] ∪ {ℵ1}, and C = {F ⊂ X ; cardF < κ}.
(a) If Y is a P-analytic space and S is a P-analytic subset of X × Y , then

P1 = {y ∈ Y ; Sy /∈ C} is in S(BP(Y )).
(b) If both Y and S ⊂ X × Y are P-Luzin, then the complement of the set

P2 = {y ∈ Y ; ∅ 6= Sy ∈ C} is in S(BP(Y )).
�����	��


. There exists a discrete set D and a continuous index-σ-P injective
mapping ϕ of a closed subset of D

�
onto X . Then S0 = (ϕ× id)−1(S) is P-analytic

(even P-Luzin in the case (b)) by Corollary 2.4, the projection πY |S0
is index-σ-P ,

being the composition of ϕ× id (which is index-σ-P due to Lemma 2.6) and of πY |S ,
and the cardinality of (S0)y is equal to the cardinality of Sy for each y ∈ Y .
Let κ < ℵ1 and E = {F ∈ F( � � ) ; cardF < κ}. Then E is a hereditary co-

analytic family of closed sets stable under homeomorphisms in � � (cf. [14]). Let
C0 = {F ∈ F(D � ) ; cardF < κ}. Then C0 = C0

∗, and P1 = {y ∈ Y ; (S0)y ∈ C∗}.
So we can use Proposition 5.1(a).
For κ = ℵ1, we put E = {F ∈ F( � � ) ; cardF 6 1}. This is a hereditary co-

analytic family of closed sets stable under homeomorphisms again, and if we put
C0 = {F ∈ F(D � ) ; cardF 6 1}, then C0 = C0

∗, and P1 = {y ∈ Y ; (S0)y ∈ (C∗0 )σ}.
Now we use Proposition 5.1(a) again.
To prove (b), we proceed similarly, using the fact that S0 is P-Luzin in this case,

and applying Proposition 5.1(c). �

Remark. Notice first that as examples of a family C from Theorem 5.2 may serve
the family C = {∅} (i.e., P1 is the complement of the projection of S), the families
of all sets having at most k points for k ∈ � , the family of finite sets, and the family
of all at most countable (not necessarily closed) sets.
The statements for the classes of singletons and countable sets were proved in [2,

Lemma in Section 5.2] for complete metric spaces X and Y by a different method.

The existence of a perfect parametrization f : D
� → M of a complete metric

space M was proved in [12, Lemma 9]. Using a result of [13] we might deduce that
such a mapping is index-σ-discrete and apply this to prove Theorem 5.4. We get an

index-σ-discrete perfect parametrization in a more straightforward and elementary
way.
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Lemma 5.3. Let M be a complete metric space. Then there exist a discrete

metric space D, a closed set F ⊂ D
�
, and a continuous index-σ-discrete mapping

f : F → M such that f(F ) = M and f−1(K) is compact for compact K.

�����	��

. Let us choose for each n ∈ � a cover Pn of M consisting of open sets

of diameter smaller than 1/n, which is σ-discrete and locally finite (the existence
of such a cover follows from the paracompactness of M). Let

∏Pn be the space

of sequences (Pn)∞n=1 of subsets of M , with Pn ∈ Pn for each n. We consider
Pn endowed with the discrete topology and the product space

∏
n∈ �

Pn embedded

into D
�
for some, sufficiently large, discrete space D. Finally, let F = {(Pn) ∈∏Pn ; {Pn} is a centered system}.

Then F is closed in
∏Pn: if (Pn)∞n=1 is not centered, then there is k ∈ � such

that
k⋂

i=1

Pi = ∅. Then {(Qn)∞n=1 ; Qi = Pi, i = 1, . . . , k} is an open neighbourhood
of (Pn)∞n=1, which does not contain any centered sequence.

We define a mapping f on F so that {f((Pn)∞n=1)} =
∞⋂

i=1

Pi.

Then f(F ) = M since for each y ∈ M and each n ∈ � there is Pn ∈ Pn such that

y ∈ Pn.

Further, f is continuous. Let (Pn)∞n=1 ∈ F , f((Pn)) = y ∈ M . Let U be open in

M , containing y. Then there is k ∈ � such that for each n > k, Pn ⊂ U . But then
{(Qn)∞n=1 ∈ F ; Qi = Pi, i = 1, . . . , k} is an open neighbourhood of (Pn)∞n=1, which

is mapped to U .

Let K be compact in M . We prove that for each n ∈ � , K meets only finitely
many sets from Pn: for each y ∈ K we find Uy containing y, which meets only

finitely many sets from Pn. We choose a finite subcover from the cover {U y ; y ∈ K}
of K, and so we obtain a finite system Sn of all sets from Pn that meet K. Now

{(Pn)∞n=1 ∈ F ; ∀i Pi ∈ Si} is a compact set in F , which is the preimage of K.

Finally, we prove that f is index-σ-discrete. To see this, it suffices to prove for

one σ-discrete basis of F , that its image is σ-discrete. We choose the basis of Baire
intervals {IP1,...,Pk

= {(Qn)∞n=1 ; Qi = Pi, i = 1, . . . , k}; k ∈ � , Pi ∈ Pi}. Here
f(IP1,...,Pk

) = P1 ∩ . . . ∩ Pk. Since Pi is σ-discrete for each i ∈ � , also {P ; P ∈ Pi}
is σ-discrete for each i, and the system of all finite intersections of closures of sets

from {Pi ; i ∈ � } is also σ-discrete. �

Theorem 5.4. Let S be a P-Luzin subset ofM×Y , where Y is a P-Luzin space
and M is a complete metric space. Let the projection πY |S be index-σ-P . Then
(a) P3 = {y ∈ Y ; Sy is compact},
(b) P4 = {y ∈ Y ; Sy is σ-compact},
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(c) P5 = {y ∈ Y ; Sy is nonempty and compact},
(d) P6 = {y ∈ Y ; Sy is nonempty and σ-compact}

are complements of S(BP ) sets in Y .

�����	��

. There exists a closed set F ⊂ D

�
and a continuous f : F → M

such that f(F ) = M , f−1(K) is compact for compact K, and f is index-σ-discrete

(Lemma 5.3). Then S0 = (id × f)−1(S) is P-Luzin by Corollary 2.4, the projection
πY |S0

is index-σ-P , being the composition of id × f (which is index-σ-P due to
Lemma 2.6) and of πY |S , and Sy is compact, σ-compact, nonempty compact, or
nonempty σ-compact, respectively, if and only if S0

y has the same property.

Applying Proposition 5.1(b) and (c) to S0, we obtain the respective claims. �

6. Bimeasurable mappings

We use here Theorem 3.2 and theorems from Section 5 to deduce generalizations
of characterizations of two types of Borel bimeasurable mappings. The first concerns

a combination of theorems of Luzin (see, e.g., [14, Theorem 15.1]) and Purves [16,
Theorem] giving a characterization of all Borel measurable mappings between Polish

spaces that map Borel sets to Borel sets. The other concerns a combination of
the classical theorem of Arsenin and Kunugui and its counterpart proved in [11]

characterizing those Borel measurable mappings that map closed sets to Borel sets
in the classical setting.

Theorem 6.1. Let X and Y be P-Luzin spaces and f : X → Y be an index-σ-P
mapping such that f−1(BP(Y )) ⊂ BP(X).
Then f(BP(X)) ⊂ BP(Y ) if and only if the set {y ∈ Y ; f−1(y) is uncountable}

is σ-P .
�����	��


. Suppose that the set {y ∈ Y ; f−1(y) is uncountable} is σ-P and let
B ∈ BP(X). Then f(B) is P-analytic according to Theorem 2.8(b), thus f(B) ∈
S(BP(Y )). Further,

f(B) = {y ∈ Y ; f−1(y) ∩B is uncountable}
∪ {y ∈ Y ; f−1(y) ∩ B is nonempty and countable}.

The first set is σ-P , thus an element of BP(Y ). The other set equals to

{y ; Gy is nonempty and countable},
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where G ⊂ B × Y is the graph of f . The projection πY restricted to G is index-σ-P
according to Lemma 2.6, thus we can use Theorem 5.2(b) to show that the second set
is a complement of a S(BP(Y )) set, thus f(B) ∈ bi-S(BP (Y )). Using Theorem 2.3,
we have that f(B) ∈ BP(Y ) and one implication is proved.
Suppose that the set N = {y ∈ Y ; f−1(y) is uncountable} is not σ-P . According

to Theorem 5.2, it is S(BP (Y )), and so scattered-analytic by Theorem 2.2. Using
Theorem 2.1, we find a homeomorphic copy C of the Cantor set in N . The preimage
of C under f is in bi-S(BP)(X) and thus P-Luzin by Theorem 2.3. As f is an index-
σ-P mapping and C is separable metric, f−1(C) is Luzin (P families in f−1(C) are
countable). So there is a one-to-one continuous mapping ϕ : F → f−1(C) of a Polish
space F onto f−1(C) by definition and (f ◦ ϕ)−1(y) is not countable for any y ∈ C.
Thus we can find a Borel set B0 in F , such that its image is not Borel in C by

[11, Luzin-Purves Theorem]. Hence, putting B = ϕ(B0), we get that f(B) is not
P-Luzin. �

Theorem 6.2. Let Y be a P-Luzin space and X be a metrizable P-Luzin space.
Let f : X → Y be an index-σ-P mapping such that f−1(BP(Y )) ⊂ BP(X). Then
f(F ) ∈ BP(Y ) for every closed F ⊂ X if and only if the set {y ∈ Y ; f−1(y) /∈ Kσ}
is σ-P .
�����	��


. Let M be a complete metric space containing X . Let G ⊂ M × Y be

the graph of f . Due to Corollary 2.4 and Theorem 2.8 (a), G is P-Luzin. According
to Lemma 2.6 (b), the projection πY |G is index-σ-P .
Suppose that the set {y ∈ Y ; f−1(y) /∈ Kσ} is σ-P . Then each its subset is (HP)σ .

Fix a closed set F ⊂ X and put H = (F × Y ) ∩ G. Since f(F ) = {y ∈ Y ; ∅ 6=
Hy ∈ Kσ} ∪ {y ∈ Y ; Hy /∈ Kσ}, the first set in the union is the complement of a
set from S(BP(Y )) according to Theorem 5.4 (d), and the second set is a subset of
{y ∈ Y ; f−1(y) /∈ Kσ}, it follows that the complement of f(F ) is in S(BP (Y )). On
the other hand, f(F ) = {y ; Gy 6= ∅} is in S(BP(Y )) according to Theorem 5.2 (a)
(with κ = 1, i.e., C = {∅}).
Conversely, suppose that N = {y ∈ Y ; f−1(y) is not Kσ} is not σ-P . According

to Theorems 5.4 (b) and 2.2, N is P-analytic. So it contains a copy C of the Cantor
set by Theorem 2.1. The preimage of C under f is P-Luzin as a bi-S(BP) subset
of the P-Luzin space X by Theorem 2.2, and separable, since f is index-σ-P . So it
is a metrizable Luzin space and we may use [11, Main Theorem] applied to f |f−1(C)

to find a closed set F in f−1(C), such that f(F ) is not Borel in C. It follows that
f(F X) is not bi-S(BP(Y )) because f(F X) ∩ C = f(F ) and in complete separable
metric spaces (even in analytic spaces) (P-)Borel sets are just the bi-Souslin subsets
(e.g., by Theorem 2.3). �
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Considering just projections, we get a variant which does not follow from the

preceding theorem since the set B in the statement of the following theorem need
not be metrizable.

Proposition 6.3. Let Y be a P-Luzin space andM be a complete metric space.

Let B ⊂ M × Y be P-Luzin and such that the projection πY is index-σ-P when
restricted to B. Then πY (F ) ∈ BP(Y ) for every closed F ⊂ B if and only if the set

{y ∈ Y ; By is not Kσ} is σ-P .
�����	��


. If the set {y ∈ πY (B) ; By is not Kσ} is σ-P , then each its subset is
(HS)σ . Since, for every closed F ⊂ B, πY (F ) = {y ∈ Y ; ∅ 6= F y ∈ Kσ} ∪ {y ∈
πY (F ) ; F y is not Kσ}, the first set in the union is the complement of an S(BP (Y ))
set according to Theorem 5.4 (d), and the second set is a subset of {y ∈ πY (B) ; By /∈
Kσ}, it follows that πY (F ) is the complement of an S(BP(Y )) set. On the other
hand, πY (F ) = {y ; F y 6= ∅}, which is S(BP (Y )) according to Theorem 5.2(a) used
with κ = 1.
Conversely, suppose that {y ∈ Y ; By is not Kσ} is not σ-P . According to The-

orem 5.4 and Theorem 2.2, it is P-analytic. So it contains a copy C of the Cantor

set by Theorem 2.1. The preimage of C by πY |B is P-Luzin as a closed subset of
the P-Luzin set B. Since the restricted projection is index-σ-P and C is separable,

(M × C) ∩B is metrizable and Luzin. Thus we can use [11, Main Theorem] to find
a closed set F ⊂ B ∩ (M × C) such that πY (F ) is not Borel. Now πY (F ) is not in
bi-S(BP (C)), because in separable complete metric spaces the classes of bi-Souslin
sets and of Borel sets coincide. So πY (F ) is not in bi-S(BP(Y )). �
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