Previous |  Up |  Next

Article

Keywords:
generalized $MV$-algebra; isometry; direct product decomposition
Summary:
In this paper we investigate the relations between isometries and direct product decompositions of generalized $MV$-algebras.
References:
[1] G. Birkhoff: Lattice Theory. American Mathematical Society, Providence, 1967. MR 0227053 | Zbl 0153.02501
[2] R. Cignoli, I. M. I. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. MR 1786097
[3] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. Zbl 0258.06011
[4] A. Dvurečenskij: Pseudo $MV$-algebras are intervals of $\ell $-groups. J. Austral. Math. Soc. 72 (2002), 427–445. DOI 10.1017/S1446788700036806 | MR 1902211
[5] G. Georgescu and A. Iorgulescu: Pseudo $MV$-algebras: a non-commutative extension of $MV$-algebras. Proc. Fourth. Internal Symp. Econ. Inf., INFOREC, Bucharest, 1999, pp. 961–968.
[6] G. Georgescu and A. Iorgulescu: Pseudo $MV$-algebras. Multiple-Valued Logic 6 (2001), 95–135. MR 1817439
[7] Ch. Holland: Intrinsic metrics for lattice ordered groups. Alg. Universalis 19 (1984), 142–150. DOI 10.1007/BF01190425 | MR 0758313 | Zbl 0557.06011
[8] J. Jakubík: Isometries of lattice ordered groups. Czechoslovak Math. J. 30 (1980), 142–152. MR 0565917
[9] J. Jakubík: On intervals and isometries of $MV$-algebras. Czechoslovak Math. J. 52 (2002), 651–663. DOI 10.1023/A:1021792116546 | MR 1923269
[10] J. Jakubík: Direct product decompositions of pseudo $MV$-algebras. Archivum math. 37 (2001), 131–142. MR 1838410
[11] J. Jakubík: Isometries of $MV$-algebras. Math. Slovaca 54 (2004), 43–48. MR 2074028
[12] J. Rachůnek: A non-commutative generalization of $MV$-algebras. Czechoslovak Math. J. 52 (2002), 255–273. DOI 10.1023/A:1021766309509 | MR 1905434
[13] K. L. Swamy: Izometries in autometrized lattice ordered groups. Algebra Univ. 8 (1977), 58–64.
Partner of
EuDML logo