Article
Keywords:
fractional integrals; commutators; BMO; weights; Orlicz spaces; maximal functions
Summary:
Given $\alpha $, $0<\alpha <n$, and $b\in {\mathrm BMO}$, we give sufficient conditions on weights for the commutator of the fractional integral operator, $[b,I_\alpha ]$, to satisfy weighted endpoint inequalities on $\mathbb{R}^n$ and on bounded domains. These results extend our earlier work [3], where we considered unweighted inequalities on $\mathbb{R}^n$.
References:
[3] D. Cruz-Uribe, SFO, A. Fiorenza:
Endpoint estimates and weighted norm inequalities for commutators of fractional integrals. Publ. Mat. 47 (2003), 103–131.
DOI 10.5565/PUBLMAT_47103_05 |
MR 1970896
[4] J. Duoandikoetxea:
Fourier Analysis. Grad. Studies Math. Vol. 29. Am. Math. Soc., Providence, 2000.
MR 1800316
[5] J. García-Cuerva, J. L. Rubio de Francia:
Weighted Norm Inequalities and Related Topics. Math. Studies Vol. 116. North Holland, Amsterdam, 1985.
MR 0848136
[6] L. Maligranda:
Orlicz spaces and interpolation. Seminars in Mathematics 5, IMECC, Universidad Estadual de Campinas, Campinas, 1989.
MR 2264389 |
Zbl 0874.46022
[8] C. Pérez:
On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted $L^p$-spaces with different weights. Proc. London Math. Soc. 71 (1995), 135–157.
MR 1327936
[10] M. M. Rao, Z. D. Ren:
Theory of Orlicz Spaces. Marcel Dekker, New York, 1991.
MR 1113700