[3] K. Akin, D. A. Buchsbaum:
Representations, resolutions and intertwining numbers. In: Communications in Algebra, Springer-Verlag, Berlin-New York, 1989, pp. 1–19.
MR 1015510
[4] K. Akin, D. A. Buchsbaum: Resolutions and intertwining numbers. In: Proceedings of a Micro-program, June 15–July 2, 1987, Springer-Verlag, New York.
[6] K. Akin, J. Weyman:
The irreducible tensor representations of $gl(m\mathrel | 1)$ and their generic homology. J. Algebra 230 (2000), 5–23.
DOI 10.1006/jabr.1999.7986 |
MR 1774756
[7] D. A. Buchsbaum:
Aspects of characteristic-free representation theory of ${\mathrm GL}_n$, and some application to intertwining numbers. Acta Applicandae Mathematicae 21 (1990), 247–261.
DOI 10.1007/BF00053299 |
MR 1085780
[10] R. W. Carter, G. Lusztig:
On the modular representation of the general linear and symmetric groups. Math. Z. 136 (1974), .
MR 0354887
[11] R. W. Cater, J. Payne:
On homomorphism between Weyl modules and Specht modules. Math. Proc. Cambridge Philos. Soc. 87 (1980), .
MR 0556922
[13] W. Fulton, J. Harris:
Representation Theory. A First Course. Springer-Verlag, New York, 1991.
MR 1153249
[15] J. A. Green: Polynomial Representation of ${\mathrm GL}_n$. Lectures Notes in Mathematics, No. 830. Springer-Verlag, Berlin, 1980.
[17] U. Kulkarni:
Skew Weyl modules for ${\mathop {\mathrm GL}\nolimits }_n$ and degree reduction for Schur algebras. J. Algebra 224 (2000), 248–262.
DOI 10.1006/jabr.1999.8042 |
MR 1739579