Article
Keywords:
boundary behavior of holomorphic functions; exceptional sets; boundary functions; computed tomography; Dirichlet problem
Summary:
We solve the Dirichlet problem for line integrals of holomorphic functions in the unit ball: For a function $u$ which is lower semi-continuous on $\partial \mathbb{B}^{n}$ we give necessary and sufficient conditions in order that there exists a holomorphic function $f\in \mathbb{O}(\mathbb{B}^{n})$ such that \[ u(z)=\int _{|\lambda |<1}\left|f(\lambda z)\right|^{2}\mathrm{d}{\mathfrak L}^{2}(\lambda ). \]
References:
[1] J. Chaumat, oral communication: Seminar on Complex Analysis at the Institute of Mathematics at Jagiellonian University. 1988.
[3] J. Globevnik:
Holomorphic functions which are highly nonintegrable at the boundary. Isr. J. Math. 115 (2000), 195–203.
MR 1749678 |
Zbl 0948.32015
[4] P. Jakóbczak:
The exceptional sets for functions from the Bergman space. Port. Math. 50 (1993), 115–128.
MR 1300590
[6] P. Jakóbczak:
Description of exceptional sets in the circles for functions from the Bergman space. Czechoslovak Math. J. 47 (1997), 633–649.
DOI 10.1023/A:1022866501339 |
MR 1479310
[7] P. Jakóbczak:
Highly non-integrable functions in the unit ball. Isr. J. Math. 97 (1997), 175–181.
DOI 10.1007/BF02774034
[10] P. Pflug: oral communication, 4-th Symposium on Classical Analysis, Kazimierz. (1987).
[11] W. Rudin:
Function theory in the unit ball of $\mathbb{C}^{n}$. Springer, New York, 1980.
MR 0601594