Previous |  Up |  Next

Article

Keywords:
commutator; Calderón-Zygmund singular integral; BMO; Lebesgue space with variable exponent; maximal function
Summary:
The boundednees of multilinear commutators of Calderón-Zygmund singular integrals on Lebesgue spaces with variable exponent is obtained. The multilinear commutators of generalized Hardy-Littlewood maximal operator are also considered.
References:
[1] R. Coifman, R. Rochberg and G. Weiss: Factorization theorems for Hardy spaces in several variables. Ann. of Math. 123 (1976), 611–635. MR 0412721
[2] D. Cruz-Uribe, A. Fiorenza and C. Neugebauer: The maximal function on variable $L^p$  spaces. Ann. Acad. Sci. Fenn. Math. 28 (2003), 223–238. MR 1976842
[3] L. Diening: Maximal function on generalized Lebesgue spaces $L^{p(\cdot )}$. Math. Inequal. Appl. 7 (2004), 245–253. MR 2057643
[4] L. Diening and M. Růžička: Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot )}$ and problems related to fluid dynamics. J. Reine Angew. Math. 563 (2003), 197–220. MR 2009242
[5] J. Garcia-Cuerva, E. Harboure, C. Segovia and J. Torrea: Weighted norm inequalities for commutators of strongly singular integrals. Indiana Univ. Math. J. 40 (1991), 1397–1420. DOI 10.1512/iumj.1991.40.40063 | MR 1142721
[6] S. Janson: Mean oscillation and commutators of singular integral operators. Ark. Mat. 16 (1978), 263–270. DOI 10.1007/BF02386000 | MR 0524754 | Zbl 0404.42013
[7] A. Karlovich and A. Lerner: Commutators of singular integrals on generalized $L^p$ spaces with variable exponent. Publ. Nat. 49 (2005), 111–125. MR 2140202
[8] V. Kokilashvili and S. Samko: Maximal and fractional operators in weighted $L^{p(x)}$ spaces. Revista Mat. Iberoam. 20 (2004), 493–515. MR 2073129
[9] O. Kovacik and J. Rákosník: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592–618. MR 1134951
[10] A. Lerner: Weighted norm inequalities for the local sharp maximal function. J. Fourier Anal. Appl. 10 (2004), 465–474. MR 2093912 | Zbl 1098.42013
[11] B. Muckenhoupt: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972), 207–226. DOI 10.1090/S0002-9947-1972-0293384-6 | MR 0293384 | Zbl 0236.26016
[12] J. Musielak: Orlicz spaces and Modular spaces. Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, 1983. MR 0724434 | Zbl 0557.46020
[13] A. Nekvinda: Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^n)$. Math. Inequal. Appl. 7 (2004), 255–265. MR 2057644
[14] C. Perez: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128 (1995), 163–185. DOI 10.1006/jfan.1995.1027 | MR 1317714 | Zbl 0831.42010
[15] C. Perez and R. Trujillo-Gonzalez: Sharp weighted estimates for multilinear commutators. J. London Math. Soc. 65 (2002), 672–692. DOI 10.1112/S0024610702003174 | MR 1895740
[16] L. Pick and M. Růžička: An example of a space $L^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math. 19 (2001), 369–371. DOI 10.1016/S0723-0869(01)80023-2 | MR 1876258
[17] M. Růžička: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000. MR 1810360
[18] E. Stein: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integral. Princeton University Press. Princeton, NJ, 1993. MR 1232192
Partner of
EuDML logo