Previous |  Up |  Next

Article

Keywords:
linear preserver; noninvertible element; semisimple Banach algebra; socle
Summary:
It is proved that a linear surjection $\Phi \:\mathcal A\rightarrow \mathcal B$, which preserves noninvertibility between semisimple, unital, complex Banach algebras, is automatically injective.
References:
[1] B. Aupetit: A Primer on Spectral Theory. Springer-Verlag, New York, 1991. MR 1083349 | Zbl 0715.46023
[2] B. Aupetit, H. du T. Mouton: Spectrum-preserving linear mappings in Banach algebras. Stud. Math. 109 (1994), 91–100. DOI 10.4064/sm-109-1-91-100 | MR 1267714
[3] M.  Brešar, A.  Fošner, and P.  Šemrl: A note on invertibility preservers on Banach algebras. Proc. Amer. Math. Soc. 131 (2003), 3833–3837. DOI 10.1090/S0002-9939-03-07192-2 | MR 1999931
[4] A. R. Sourour: Invertibility preserving maps on  $L(X)$. Trans. Amer. Math. Soc. 348 (1996), 13–30. DOI 10.1090/S0002-9947-96-01428-6 | MR 1311919
Partner of
EuDML logo