Previous |  Up |  Next

Article

Keywords:
Szász-Mirakian quasi-interpolants; simultaneous approximation; direct and inverse theorems; Ditzian-Totik modulus
Summary:
We obtain simultaneous approximation equivalence theorem for Szász-Mirakian quasi-interpolants.
References:
[1] A. T. Diallo: Szász-Mirakian quasi-interpolants. In: Curves and Surfaces, Laurent, Le Méhauté, Schumaker (eds.), Academic Press, New York, 1991, pp. 149–156.
[2] A. T. Diallo: Rate of convergence of Szász-Mirakian quasi-interpolants. ICTP preprint IC/97/138, Miramarc-Trieste, 1997.
[3] Z.  Ditzian: Direct estimate for Bernstein polynomials. J.  Approx. Theory 79 (1994), 165–166. DOI 10.1006/jath.1994.1120 | MR 1294327 | Zbl 0814.41005
[4] Z.  Ditzian, V.  Totik: Moduli of Smoothness. Springer-Verlag, New York, 1987. MR 0914149
[5] S.  Guo, C. Li, G. Yang, and S.  Yue: Pointwise estimate for Szász operators. J.  Approx. Theory. 94 (1998), 160–171. DOI 10.1006/jath.1998.3200 | MR 1637831
[6] S.  Guo, L.  Liu, and Q.  Qi: Pointwise estimate for linear combinations of Bernstein-Kantorovich operators. J. Math. Anal. Appl. 265 (2002), 135–147. DOI 10.1006/jmaa.2001.7700 | MR 1874261
[7] P.  Sablonnière: Representation of quasi-interpolants as differential operators and applications. In: New Developments in Approximation Theory (International Series of Numerical Mathematics, Vol.  132), Müller, Buhmann, Mache and Felten (eds.), Birkhäuser-Verlag, Basel, 1998, pp. 233–253. MR 1724922
[8] V. Totik: Uniform approximation by Szász-Mirakian operators. Acta Math. Acad. Sci. Hungar. 41 (1983), 291–307. DOI 10.1007/BF01961317 | MR 0703742
Partner of
EuDML logo