Previous |  Up |  Next

Article

Keywords:
global dimension; $\ast $-module
Summary:
In this note we show that for a $\ast ^{n}$-module, in particular, an almost $n$-tilting module, $P$ over a ring $R$ with $A=\mathop {\mathrm End}_{R}P$ such that $P_A$ has finite flat dimension, the upper bound of the global dimension of $A$ can be estimated by the global dimension of $R$ and hence generalize the corresponding results in tilting theory and the ones in the theory of $\ast $-modules. As an application, we show that for a finitely generated projective module over a VN regular ring $R$, the global dimension of its endomorphism ring is not more than the global dimension of $R$.
References:
[1] R. Colpi: Some remarks on equivalences between categories of modules. Commun. Algebra 18 (1990), 1935–1951. DOI 10.1080/00927879008824002 | MR 1071082 | Zbl 0708.16002
[2] R. Colpi: Tilting modules and $\ast $-modules. Commun. Algebra 21 (1993), 1095–1102. DOI 10.1080/00927879308824612 | MR 1209922
[3] R. Colpi, C.  Menini: On the structure of $\ast $-modules. J. Algebra 158 (1993), 400–419. DOI 10.1006/jabr.1993.1138 | MR 1226797
[4] R. Colpi, J. Trlifaj: Classes of generalized $\ast $-modules. Commun. Algebra 22 (1994), 3985–3995. DOI 10.1080/00927879408825060 | MR 1280103
[5] K. R. Fuller: $\ast $-modules over ring extensions. Commun. Algebra 25 (1997), 2839–2860. DOI 10.1080/00927879708826026 | MR 1458733
[6] I. Kaplansky: Projective modules. Ann. Math. 68 (1958), 372–377. DOI 10.2307/1970252 | MR 0100017 | Zbl 0083.25802
[7] Y. Miyashita: Tilting modules of finite projective dimension. Math. Zeit. 193 (1986), 113–146. DOI 10.1007/BF01163359 | MR 0852914 | Zbl 0578.16015
[8] C. Menini, A. Orsatti: Representable equivalences between categories of modules and applications. Rend. Sem. Mat. Univ. Padova 82 (1989), 203–231. MR 1049594
[9] M. Sato: Fuller’s Theorem on equivalences. J.  Algebra 52 (1978), 174–184. MR 0485993 | Zbl 0374.16024
[10] J. Trlifaj: Dimension estimates for representable equivalences of module categories. J.  Algebra 193 (1997), 660–676. DOI 10.1006/jabr.1996.7005 | MR 1458808 | Zbl 0884.16005
[11] J. Trlifaj: $\ast $-modules are finitely generated. J.  Algebra 169 (1994), 392–398. DOI 10.1006/jabr.1994.1291
[12] J. Wei: Global dimension of the endomorphism ring and $\ast ^n$modules. J. Algebra 291 (2005), 238–249. DOI 10.1016/j.jalgebra.2005.05.019 | MR 2158520
[13] J. Wei: $(n,t)$-quasi-projective and equivalences. Commun. Algebra (to appear). MR 2184002 | Zbl 1107.16012
[14] J. Wei, Z.  Huang, W. Tong, and J. Huang: Tilting modules of finite projective dimension and a generalization of $\ast $-modules. J.  Algebra 268 (2003), 404–418. DOI 10.1016/S0021-8693(03)00143-1 | MR 2009316
[15] B. Zimmerman-Huisgen: Endomorphism rings of self-generators. Pacific J.  Math. 61 (1975), 587–602. DOI 10.2140/pjm.1975.61.587 | MR 0404322
Partner of
EuDML logo