Previous |  Up |  Next

Article

Keywords:
nonlocal boundary-value problems; positive solutions; duality method; variational method
Summary:
The existence of positive solutions for a nonlocal boundary-value problem with vector-valued response is investigated. We develop duality and variational principles for this problem. Our variational approach enables us to approximate solutions and give a measure of a duality gap between the primal and dual functional for minimizing sequences.
References:
[1] V. Anuradha, D. D. Hai and R. Shivaji: Existence results for superlinear semipositone BVP’s. Proc. A.M.S. 124 (1996), 757–763. MR 1317029
[2] A. V. Bitsadze: On the theory of nonlocal boundary value problems. Soviet Math. Dokl. 30 (1984), 8–10. MR 0757061 | Zbl 0586.30036
[3] A. V. Bitsadze and A. A. Samarskii: Some elementary generalizations of linear elliptic boundary value problems. Dokl. Akad. Nauk SSSR 185 (1969), 739–740. MR 0247271
[4] D. R. Dunninger and H. Wang: Multiplicity of positive solutions for a nonlinear differential equation with nonlinear boundary conditions. Annales Polonici Math. LXIX.2 (1998), 155–165. MR 1641876
[5] W. P. Eloe and J. Henderson: Positive solutions and nonlinear multipoint conjugate eigenvalue problems. Electronic J. of Differential Equations 03 (1997), 1–11. MR 1428301
[6] L. H. Erbe and H. Wang: On the existence of positive solutions of ordinary differential equations. Proc. A.M.S. 120 (1994), 743–748. MR 1204373
[7] C. P. Gupta: Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation. J. Math. Anal. Appl. 168 (1992), 540–551. DOI 10.1016/0022-247X(92)90179-H | MR 1176010 | Zbl 0763.34009
[8] C. Gupta, S. K. Ntouyas and P. Ch. Tsamatos: On an m-point boundary value problem for second order differential equations. Nonlinear Analysis TMA 23 (1994), 1427–1436. DOI 10.1016/0362-546X(94)90137-6 | MR 1306681
[9] C. Gupta: Solvability of a generalized multipoint boundary value problem of mixed type for second order ordinary differential equations. Proc. Dynamic Systems and Applications 2 (1996), 215–222. MR 1419531
[10] C. P. Gupta: A generalized multi-point nonlinear boundary value problem for a second order ordinary differential equation. Appl. Math. Comput 89 (1998), 133–146. DOI 10.1016/S0096-3003(97)81653-0 | MR 1491699
[11] J. Henderson and H. Wang: Positive solutions for nonlinear eigenvalue problems. J. Math. Anal. Appl. 208 (1997), 252–259. DOI 10.1006/jmaa.1997.5334 | MR 1440355
[12] V. A. Il’in and E. I. Moiseev: Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects. Differ. Equ. 23 (1987), 803–811.
[13] V. A. Il’in and E. I. Moiseev: Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator in its differential and finite difference aspects. Differ. Equ. 23 (1987), 979–987.
[14] G. L. Karakostas and P. Ch. Tsamatos: Positive solutions of a boundary-value problem for second order ordinary differential equations. Electronic Journal of Differential Equations 49 (2000 2000), 1–9. MR 1772734
[15] G. L. Karakostas and P. Ch. Tsamatos: Positive solutions for a nonlocal boundary-value problem with increasing response. Electronic Journal of Differential Equations 73 (2000), 1–8. MR 1801638
[16] G. L. Karakostas and P. Ch. Tsamatos: Multiple positive solutions for a nonlocal boundary-value problem with response function quiet at zero. Electronic Journal of Differential Equations 13 (2001), 1–10. MR 1811786
[17] G. L. Karakostas and P. Ch. Tsamatos: Existence of multiple solutions for a nonlocal boundary-value problem. Topol. Math. Nonl. Anal. 19 (2000), 109–121. MR 1921888
[18] M. A. Krasnoselski: Positive solutions of operator equations. Noordhoff, Groningen, 1964. MR 0181881
[19] R. Ma: Positive solutions for a nonlinear three-point boundary-value problem. Electronic Journal of Differential Equations 34 (1998), 1–8.
[20] R. Y. Ma and N. Castaneda: Existence of solutions of nonlinear m-point boundary value problems. J. Math. Anal. Appl. 256 (2001), 556–567. DOI 10.1006/jmaa.2000.7320 | MR 1821757
[21] R. Ma: Existence of positive solutions for second order m-point boundary value problems. Annales Polonici Mathematici LXXIX.3 (2002), 256–276. MR 1957802 | Zbl 1055.34025
[22] J. Mawhin: Problèmes de Dirichlet Variationnels Non Linéares. Les Presses de l’Université de Montréal (1987). MR 0906453
[23] A. Nowakowski: A new variational principle and duality for periodic solutions of Hamilton’s equations. J. Differential Eqns. 97 (1992), 174–188. DOI 10.1016/0022-0396(92)90089-6 | MR 1161317 | Zbl 0759.34039
[24] A. Nowakowski and A. Orpel: Positive solutions for a nonlocal boundary-value problem with vector-valued response. Electronic J. of Differential Equations 46 (2002), 1–15. MR 1907722
[25] P. H. Rabinowitz: Minimax Methods in Critical Points Theory with Applications to Differential Equations. AMS, Providence, 1986. MR 0845785
[26] J. R. L. Webb: Positive solutions of some three-point boundary value problems via fixed point theory. Nonlinear Anal. 47 (2001), 4319–4332. DOI 10.1016/S0362-546X(01)00547-8 | MR 1975828
[27] H. Wang: On the existence of positive solutions for semilinear elliptic equations in annulus. J. Differential Equation 109 (1994), 1–4. DOI 10.1006/jdeq.1994.1042 | MR 1272398
[28] M. Willem: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications. Basel, Boston, Berlin: Birkhäuser, Vol. 24, 1996. MR 1400007 | Zbl 0856.49001
Partner of
EuDML logo