[1] V. Anuradha, D. D. Hai and R. Shivaji:
Existence results for superlinear semipositone BVP’s. Proc. A.M.S. 124 (1996), 757–763.
MR 1317029
[2] A. V. Bitsadze:
On the theory of nonlocal boundary value problems. Soviet Math. Dokl. 30 (1984), 8–10.
MR 0757061 |
Zbl 0586.30036
[3] A. V. Bitsadze and A. A. Samarskii:
Some elementary generalizations of linear elliptic boundary value problems. Dokl. Akad. Nauk SSSR 185 (1969), 739–740.
MR 0247271
[4] D. R. Dunninger and H. Wang:
Multiplicity of positive solutions for a nonlinear differential equation with nonlinear boundary conditions. Annales Polonici Math. LXIX.2 (1998), 155–165.
MR 1641876
[5] W. P. Eloe and J. Henderson:
Positive solutions and nonlinear multipoint conjugate eigenvalue problems. Electronic J. of Differential Equations 03 (1997), 1–11.
MR 1428301
[6] L. H. Erbe and H. Wang:
On the existence of positive solutions of ordinary differential equations. Proc. A.M.S. 120 (1994), 743–748.
MR 1204373
[8] C. Gupta, S. K. Ntouyas and P. Ch. Tsamatos:
On an m-point boundary value problem for second order differential equations. Nonlinear Analysis TMA 23 (1994), 1427–1436.
DOI 10.1016/0362-546X(94)90137-6 |
MR 1306681
[9] C. Gupta:
Solvability of a generalized multipoint boundary value problem of mixed type for second order ordinary differential equations. Proc. Dynamic Systems and Applications 2 (1996), 215–222.
MR 1419531
[12] V. A. Il’in and E. I. Moiseev: Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects. Differ. Equ. 23 (1987), 803–811.
[13] V. A. Il’in and E. I. Moiseev: Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator in its differential and finite difference aspects. Differ. Equ. 23 (1987), 979–987.
[14] G. L. Karakostas and P. Ch. Tsamatos:
Positive solutions of a boundary-value problem for second order ordinary differential equations. Electronic Journal of Differential Equations 49 (2000 2000), 1–9.
MR 1772734
[15] G. L. Karakostas and P. Ch. Tsamatos:
Positive solutions for a nonlocal boundary-value problem with increasing response. Electronic Journal of Differential Equations 73 (2000), 1–8.
MR 1801638
[16] G. L. Karakostas and P. Ch. Tsamatos:
Multiple positive solutions for a nonlocal boundary-value problem with response function quiet at zero. Electronic Journal of Differential Equations 13 (2001), 1–10.
MR 1811786
[17] G. L. Karakostas and P. Ch. Tsamatos:
Existence of multiple solutions for a nonlocal boundary-value problem. Topol. Math. Nonl. Anal. 19 (2000), 109–121.
MR 1921888
[18] M. A. Krasnoselski:
Positive solutions of operator equations. Noordhoff, Groningen, 1964.
MR 0181881
[19] R. Ma: Positive solutions for a nonlinear three-point boundary-value problem. Electronic Journal of Differential Equations 34 (1998), 1–8.
[20] R. Y. Ma and N. Castaneda:
Existence of solutions of nonlinear m-point boundary value problems. J. Math. Anal. Appl. 256 (2001), 556–567.
DOI 10.1006/jmaa.2000.7320 |
MR 1821757
[21] R. Ma:
Existence of positive solutions for second order m-point boundary value problems. Annales Polonici Mathematici LXXIX.3 (2002), 256–276.
MR 1957802 |
Zbl 1055.34025
[22] J. Mawhin:
Problèmes de Dirichlet Variationnels Non Linéares. Les Presses de l’Université de Montréal (1987).
MR 0906453
[24] A. Nowakowski and A. Orpel:
Positive solutions for a nonlocal boundary-value problem with vector-valued response. Electronic J. of Differential Equations 46 (2002), 1–15.
MR 1907722
[25] P. H. Rabinowitz:
Minimax Methods in Critical Points Theory with Applications to Differential Equations. AMS, Providence, 1986.
MR 0845785
[27] H. Wang:
On the existence of positive solutions for semilinear elliptic equations in annulus. J. Differential Equation 109 (1994), 1–4.
DOI 10.1006/jdeq.1994.1042 |
MR 1272398
[28] M. Willem:
Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications. Basel, Boston, Berlin: Birkhäuser, Vol. 24, 1996.
MR 1400007 |
Zbl 0856.49001