[1] D. R. Adams and L. I. Hedberg:
Function Spaces and Potential Theory. Springer, Berlin-Heidelberg, 1995.
MR 1411441
[3] N. Arcozzi and A. Björn:
Dominating sets for analytic and harmonic functions and completeness of weighted Bergman spaces. Math. Proc. Roy. Irish Acad. 102A (2002), 175–192.
MR 1961636
[6] A. Björn:
Removable singularities for weighted Bergman spaces. Preprint, LiTH-MAT-R-1999-23, Linköpings universitet, Linköping, 1999.
MR 2207013
[7] A. Björn:
Removable singularities for $H^p$ spaces of analytic functions, $0. Ann. Acad. Sci. Fenn. Math. 26 (2001), 155–174. MR 1816565
[10] L. Carleson:
Selected Problems on Exceptional Sets. Van Nostrand, Princeton, N. J., 1967.
MR 0225986 |
Zbl 0189.10903
[12] E. P. Dolzhenko: On the removal of singularities of analytic functions. Uspekhi Mat. Nauk 18, No. 4 (1963), 135–142. (Russian)
[13] J. García-Cuerva and J. L. Rubio de Francia:
Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam, 1985.
MR 0807149
[14] J. B. Garnett:
Analytic Capacity and Measure. Lecture Notes in Math. Vol. 297, Springer, Berlin-Heidelberg, 1972.
MR 0454006 |
Zbl 0253.30014
[15] V. P. Havin and V. G. Maz’ya:
On approximation in the mean by analytic functions. Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 23, No. 13 (1968), 62–74. (Russian)
MR 0235131
[18] J. Heinonen, T. Kilpeläinen and O. Martio:
Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Univ. Press, Oxford, 1993.
MR 1207810
[19] L. Hörmander:
The Analysis of Linear Partial Differential Operators I. 2nd ed., Springer, Berlin-Heidelberg, 1990.
MR 1065993
[21] S. Ya. Khavinson:
Analytic capacity of sets, joint nontriviality of various classes of analytic functions and the Schwarz lemma in arbitrary domains. Mat. Sb. 54 (1961), 3–50. (Russian)
MR 0136720 |
Zbl 0147.33203
[22] S. Ya. Khavinson:
Removable singularities of analytic functions of the V. I. Smirnov class. Problems in Modern Function Theory, Proceedings of a Conference (P. P. Belinskiĭ, ed.), Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk, 1976, pp. 160–166. (Russian)
MR 0507787
[23] S. V. Khrushchëv:
A simple proof of a removable singularity theorem for a class of Lipschitz functions. Investigations on Linear Operators and the Theory of Functions XI, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) Vol. 113, Nauka, Leningrad, 1981, pp. 199–203, 267. (Russian)
MR 0629840
[24] T. Kilpeläinen: Weighted Sobolev spaces and capacity. Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 95–113.
[26] J. Král:
Singularités non essentielles des solutions des équations aux dérivées partielles. Séminaire de Théorie du Potentiel (Paris, 1972–1974), Lecture Notes in Math. Vol. 518, Springer, Berlin-Heidelberg, 1976, pp. 95–106.
MR 0509059
[27] X. U. Nguyen:
Removable sets of analytic functions satisfying a Lipschitz condition. Ark. Mat. 17 (1979), 19–27.
MR 0543500 |
Zbl 0442.30033
[31] J. Väisälä:
Lectures on $n$-Dimensional Quasiconformal Mappings. Lecture Notes in Math. vol. 229, Springer, Berlin-Heidelberg, 1971.
MR 0454009