[3] C. C. Chang:
A new proof of the completeness of the Lukasziewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80.
MR 0122718
[4] P. M. Cohn:
Universal Algebra. Harper and Row Publishers, New York, Evaston, London, 1965.
MR 0175948 |
Zbl 0141.01002
[5] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici:
Algebraic foundation of many-valued reasoning. Kluwer, Dordrecht, 2000.
MR 1786097
[8] A. Dvurečenskij and S. Pulmannová:
New Trends in Quantum Structures. Kluwer, Dordrecht, 2000.
MR 1861369
[10] A. E. Evseev:
A survey of partial grupoids. In: Properties of Semigroups (Lyapin, E. S., ed.), Gos. Ped. Inst. Leningrad (1984), 39–76. (Russian)
MR 0796886
[11] D. J. Foulis and M. K. Bennett:
Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346.
MR 1304942
[15] K. R. Goodearl:
Partially Ordered Abelian Groups with Interpolation. American Mathematical Society, Providence, Rhode Island, 1986.
MR 0845783 |
Zbl 0589.06008
[16] K. R. Goodearl and D. E. Handelman:
Stenosis in dimension groups and QF C*-algebras. J. Reine Angew. Math. 332 (1982), 1–98.
MR 0656856
[19] D. Handelman:
Extensions for AF C*-algebras and dimension groups. Trans. Amer. Math. Soc. 271 (1982), 537–573.
MR 0654850 |
Zbl 0517.46051
[20] J. Hedlíková and S. Pulmannová:
Generalized difference posets and orthoalgebras. Acta Math. Univ. Comenianae 45 (1996), 247–279.
MR 1451174
[22] F. Kôpka and F. Chovanec:
D-posets. Math. Slovaca 44 (1994), 21–34.
MR 1290269
[23] E. S. Lyapin and A. E. Evseev: Partial Grupoids. Ross. Gos. Ped. Inst. St.-Petersburg, 1991. (Russian)
[24] J. M. Lindsay and K. R. Parthasarathy:
Cohomology of power sets with applications in quantum probability. Commun. Math. Phys. 124 (1989), 337–364.
DOI 10.1007/BF01219655 |
MR 1012630
[26] G. J. Murphy:
C*-algebras and Operator Theory. Academic Press, INC., Boston, 1990.
MR 1074574
[29] O. Nánásiová and S. Pulmannová:
Abelian extensions of difference sets. Tatra Mt. Math. Publ. 22 (2001), 179–196.
MR 1889044
[31] K. Ravindran: On a structure theory of effect algebras. PhD thesis, Kansas State Univ., Manhattan, Kansas, 1996.
[32] K. D. Schmidt:
Minimal clans: A class of ordered partial semigroups including Boolean rings and lattice-ordered groups. In: Semigroups-Theory and Applications (Oberwolfach 1986) LNM 1320, Springer-Verlag, Berlin, Heidelberg, New York, 1988, pp. 300–341.
MR 0957778 |
Zbl 0664.06010