Article
Keywords:
regular semigroup; sandwich set; congruence; natural order; compatibility; completely regular element or semigroup; cryptogroup
Summary:
Let $S$ be a regular semigroup and $E(S)$ be the set of its idempotents. We call the sets $S(e,f)f$ and $eS(e,f)$ one-sided sandwich sets and characterize them abstractly where $e,f \in E(S)$. For $a, a^{\prime } \in S$ such that $a=aa^{\prime }a$, $a^{\prime }=a^{\prime }aa^{\prime }$, we call $S(a)=S(a^{\prime }a, aa^{\prime })$ the sandwich set of $a$. We characterize regular semigroups $S$ in which all $S(e,f)$ (or all $S(a))$ are right zero semigroups (respectively are trivial) in several ways including weak versions of compatibility of the natural order. For every $a \in S$, we also define $E(a)$ as the set of all idempotets $e$ such that, for any congruence $\rho $ on $S$, $a \rho a^2$ implies that $a \rho e$. We study the restrictions on $S$ in order that $S(a)$ or $E(a)\cap D_{a^2}$ be trivial. For $\mathcal F \in \lbrace \mathcal S, \mathcal E\rbrace $, we define $\mathcal F$ on $S$ by $a \mathrel {\mathcal F}b$ if $F(a) \cap F (b)\ne \emptyset $. We establish for which $S$ are $\mathcal S$ or $\mathcal E$ congruences.
References:
[1] K. Auinger:
Free objects in joins of strict inverse and completely simple semigroups. J. London Math. Soc. 45 (1992), 491–507.
MR 1180258
[3] T. S. Blyth and M. G. Gomes:
On the compatibility of the natural order on a regular semigroup. Proc. Royal Soc. Edinburgh A94 (1983), 79–84.
MR 0700501
[5] G. Lallement:
Congruences et équivalences de Green sur un demi-groupe régulier. C.R. Acad. Sci., Paris 262 (1966), 613–616.
MR 0207872 |
Zbl 0136.26603
[6] K. S. S. Nambooripad:
Structure of regular semigroups. Mem. Amer. Math. Soc. 224 (1979).
MR 0546362 |
Zbl 0457.20051
[7] K. S. S. Nambooripad:
The natural partial order on a regular semigroup. Proc. Edinburgh Math. Soc. 23 (1980), 249–260.
MR 0620922 |
Zbl 0459.20054